Metamath Proof Explorer


Theorem cusgredgex

Description: Any two (distinct) vertices in a complete simple graph are connected to each other by an edge. (Contributed by BTernaryTau, 3-Oct-2023)

Ref Expression
Hypotheses cusgredgex.1 V=VtxG
cusgredgex.2 E=EdgG
Assertion cusgredgex GComplUSGraphAVBVAABE

Proof

Step Hyp Ref Expression
1 cusgredgex.1 V=VtxG
2 cusgredgex.2 E=EdgG
3 cusgrcplgr GComplUSGraphGComplGraph
4 1 2 cplgredgex GComplGraphAVBVAeEABe
5 3 4 syl GComplUSGraphAVBVAeEABe
6 5 imp GComplUSGraphAVBVAeEABe
7 df-rex eEABeeeEABe
8 6 7 sylib GComplUSGraphAVBVAeeEABe
9 eldifsni BVABA
10 9 necomd BVAAB
11 10 adantl AVBVAAB
12 hashprg AVBVAABAB=2
13 11 12 mpbid AVBVAAB=2
14 13 adantl GComplUSGrapheEAVBVAAB=2
15 cusgrusgr GComplUSGraphGUSGraph
16 2 usgredgppr GUSGrapheEe=2
17 15 16 sylan GComplUSGrapheEe=2
18 17 adantr GComplUSGrapheEAVBVAe=2
19 14 18 eqtr4d GComplUSGrapheEAVBVAAB=e
20 simpl GComplUSGrapheEAVBVAGComplUSGrapheE
21 vex eV
22 2nn0 20
23 hashvnfin eV20e=2eFin
24 21 22 23 mp2an e=2eFin
25 17 24 syl GComplUSGrapheEeFin
26 fisshasheq eFinABeAB=eAB=e
27 25 26 syl3an1 GComplUSGrapheEABeAB=eAB=e
28 27 3comr AB=eGComplUSGrapheEABeAB=e
29 28 3exp AB=eGComplUSGrapheEABeAB=e
30 19 20 29 sylc GComplUSGrapheEAVBVAABeAB=e
31 30 3impa GComplUSGrapheEAVBVAABeAB=e
32 31 3com23 GComplUSGraphAVBVAeEABeAB=e
33 32 3expia GComplUSGraphAVBVAeEABeAB=e
34 33 imdistand GComplUSGraphAVBVAeEABeeEAB=e
35 34 eximdv GComplUSGraphAVBVAeeEABeeeEAB=e
36 8 35 mpd GComplUSGraphAVBVAeeEAB=e
37 pm3.22 eEAB=eAB=eeE
38 eqcom AB=ee=AB
39 38 anbi1i AB=eeEe=ABeE
40 37 39 sylib eEAB=ee=ABeE
41 40 eximi eeEAB=eee=ABeE
42 36 41 syl GComplUSGraphAVBVAee=ABeE
43 prex ABV
44 eleq1 e=ABeEABE
45 43 44 ceqsexv ee=ABeEABE
46 42 45 sylib GComplUSGraphAVBVAABE
47 46 ex GComplUSGraphAVBVAABE