Description: Any two (distinct) vertices in a complete simple graph are connected to each other by an edge. (Contributed by BTernaryTau, 3-Oct-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cusgredgex.1 | |
|
cusgredgex.2 | |
||
Assertion | cusgredgex | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cusgredgex.1 | |
|
2 | cusgredgex.2 | |
|
3 | cusgrcplgr | |
|
4 | 1 2 | cplgredgex | |
5 | 3 4 | syl | |
6 | 5 | imp | |
7 | df-rex | |
|
8 | 6 7 | sylib | |
9 | eldifsni | |
|
10 | 9 | necomd | |
11 | 10 | adantl | |
12 | hashprg | |
|
13 | 11 12 | mpbid | |
14 | 13 | adantl | |
15 | cusgrusgr | |
|
16 | 2 | usgredgppr | |
17 | 15 16 | sylan | |
18 | 17 | adantr | |
19 | 14 18 | eqtr4d | |
20 | simpl | |
|
21 | vex | |
|
22 | 2nn0 | |
|
23 | hashvnfin | |
|
24 | 21 22 23 | mp2an | |
25 | 17 24 | syl | |
26 | fisshasheq | |
|
27 | 25 26 | syl3an1 | |
28 | 27 | 3comr | |
29 | 28 | 3exp | |
30 | 19 20 29 | sylc | |
31 | 30 | 3impa | |
32 | 31 | 3com23 | |
33 | 32 | 3expia | |
34 | 33 | imdistand | |
35 | 34 | eximdv | |
36 | 8 35 | mpd | |
37 | pm3.22 | |
|
38 | eqcom | |
|
39 | 38 | anbi1i | |
40 | 37 39 | sylib | |
41 | 40 | eximi | |
42 | 36 41 | syl | |
43 | prex | |
|
44 | eleq1 | |
|
45 | 43 44 | ceqsexv | |
46 | 42 45 | sylib | |
47 | 46 | ex | |