Description: Lemma 2 for cusgrfi . (Contributed by Alexander van der Vekens, 13-Jan-2018) (Revised by AV, 11-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cusgrfi.v | |
|
cusgrfi.p | |
||
cusgrfi.f | |
||
Assertion | cusgrfilem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cusgrfi.v | |
|
2 | cusgrfi.p | |
|
3 | cusgrfi.f | |
|
4 | eldifi | |
|
5 | id | |
|
6 | prelpwi | |
|
7 | 4 5 6 | syl2anr | |
8 | 4 | adantl | |
9 | eldifsni | |
|
10 | 9 | adantl | |
11 | eqidd | |
|
12 | 10 11 | jca | |
13 | id | |
|
14 | neeq1 | |
|
15 | preq1 | |
|
16 | 15 | eqeq2d | |
17 | 14 16 | anbi12d | |
18 | 17 | adantl | |
19 | 13 18 | rspcedv | |
20 | 8 12 19 | sylc | |
21 | 2 | eleq2i | |
22 | eqeq1 | |
|
23 | 22 | anbi2d | |
24 | 23 | rexbidv | |
25 | eqeq1 | |
|
26 | 25 | anbi2d | |
27 | 26 | rexbidv | |
28 | 27 | cbvrabv | |
29 | 24 28 | elrab2 | |
30 | 21 29 | bitri | |
31 | 7 20 30 | sylanbrc | |
32 | 31 | ralrimiva | |
33 | simpl | |
|
34 | 33 | anim2i | |
35 | 34 | adantl | |
36 | eldifsn | |
|
37 | 35 36 | sylibr | |
38 | eqeq1 | |
|
39 | 38 | adantl | |
40 | 39 | ad2antlr | |
41 | vex | |
|
42 | vex | |
|
43 | 41 42 | preqr1 | |
44 | 43 | equcomd | |
45 | 40 44 | syl6bi | |
46 | 45 | adantll | |
47 | 15 | equcoms | |
48 | 47 | eqeq2d | |
49 | 48 | biimpcd | |
50 | 49 | adantl | |
51 | 50 | adantl | |
52 | 51 | ad2antlr | |
53 | 46 52 | impbid | |
54 | 53 | ralrimiva | |
55 | 37 54 | jca | |
56 | 55 | ex | |
57 | 56 | reximdv2 | |
58 | 57 | expimpd | |
59 | eqeq1 | |
|
60 | 59 | anbi2d | |
61 | 60 | rexbidv | |
62 | 61 2 | elrab2 | |
63 | reu6 | |
|
64 | 58 62 63 | 3imtr4g | |
65 | 64 | ralrimiv | |
66 | 3 | f1ompt | |
67 | 32 65 66 | sylanbrc | |