Metamath Proof Explorer


Theorem cvmliftlem3

Description: Lemma for cvmlift . Since 1st( TM ) is a neighborhood of ( G " W ) , every element A e. W satisfies ( GA ) e. ( 1st( TM ) ) . (Contributed by Mario Carneiro, 16-Feb-2015)

Ref Expression
Hypotheses cvmliftlem.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
cvmliftlem.b B=C
cvmliftlem.x X=J
cvmliftlem.f φFCCovMapJ
cvmliftlem.g φGIICnJ
cvmliftlem.p φPB
cvmliftlem.e φFP=G0
cvmliftlem.n φN
cvmliftlem.t φT:1NjJj×Sj
cvmliftlem.a φk1NGk1NkN1stTk
cvmliftlem.l L=topGenran.
cvmliftlem1.m φψM1N
cvmliftlem3.3 W=M1NMN
cvmliftlem3.m φψAW
Assertion cvmliftlem3 φψGA1stTM

Proof

Step Hyp Ref Expression
1 cvmliftlem.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
2 cvmliftlem.b B=C
3 cvmliftlem.x X=J
4 cvmliftlem.f φFCCovMapJ
5 cvmliftlem.g φGIICnJ
6 cvmliftlem.p φPB
7 cvmliftlem.e φFP=G0
8 cvmliftlem.n φN
9 cvmliftlem.t φT:1NjJj×Sj
10 cvmliftlem.a φk1NGk1NkN1stTk
11 cvmliftlem.l L=topGenran.
12 cvmliftlem1.m φψM1N
13 cvmliftlem3.3 W=M1NMN
14 cvmliftlem3.m φψAW
15 10 adantr φψk1NGk1NkN1stTk
16 oveq1 k=Mk1=M1
17 16 oveq1d k=Mk1N=M1N
18 oveq1 k=MkN=MN
19 17 18 oveq12d k=Mk1NkN=M1NMN
20 19 13 eqtr4di k=Mk1NkN=W
21 20 imaeq2d k=MGk1NkN=GW
22 2fveq3 k=M1stTk=1stTM
23 21 22 sseq12d k=MGk1NkN1stTkGW1stTM
24 23 rspcv M1Nk1NGk1NkN1stTkGW1stTM
25 12 15 24 sylc φψGW1stTM
26 iiuni 01=II
27 26 3 cnf GIICnJG:01X
28 5 27 syl φG:01X
29 28 adantr φψG:01X
30 29 ffund φψFunG
31 1 2 3 4 5 6 7 8 9 10 11 12 13 cvmliftlem2 φψW01
32 29 fdmd φψdomG=01
33 31 32 sseqtrrd φψWdomG
34 funfvima2 FunGWdomGAWGAGW
35 30 33 34 syl2anc φψAWGAGW
36 14 35 mpd φψGAGW
37 25 36 sseldd φψGA1stTM