Metamath Proof Explorer


Theorem cvmsval

Description: Elementhood in the set S of all even coverings of an open set in J . S is an even covering of U if it is a nonempty collection of disjoint open sets in C whose union is the preimage of U , such that each set u e. S is homeomorphic under F to U . (Contributed by Mario Carneiro, 13-Feb-2015)

Ref Expression
Hypothesis cvmcov.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
Assertion cvmsval CVTSUUJTCTT=F-1UuTvTuuv=FuC𝑡uHomeoJ𝑡U

Proof

Step Hyp Ref Expression
1 cvmcov.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
2 1 cvmsi TSUUJTCTT=F-1UuTvTuuv=FuC𝑡uHomeoJ𝑡U
3 3anass UJTCTT=F-1UuTvTuuv=FuC𝑡uHomeoJ𝑡UUJTCTT=F-1UuTvTuuv=FuC𝑡uHomeoJ𝑡U
4 id UJUJ
5 pwexg CV𝒫CV
6 difexg 𝒫CV𝒫CV
7 rabexg 𝒫CVs𝒫C|s=F-1Uusvsuuv=FuC𝑡uHomeoJ𝑡UV
8 5 6 7 3syl CVs𝒫C|s=F-1Uusvsuuv=FuC𝑡uHomeoJ𝑡UV
9 imaeq2 k=UF-1k=F-1U
10 9 eqeq2d k=Us=F-1ks=F-1U
11 oveq2 k=UJ𝑡k=J𝑡U
12 11 oveq2d k=UC𝑡uHomeoJ𝑡k=C𝑡uHomeoJ𝑡U
13 12 eleq2d k=UFuC𝑡uHomeoJ𝑡kFuC𝑡uHomeoJ𝑡U
14 13 anbi2d k=Uvsuuv=FuC𝑡uHomeoJ𝑡kvsuuv=FuC𝑡uHomeoJ𝑡U
15 14 ralbidv k=Uusvsuuv=FuC𝑡uHomeoJ𝑡kusvsuuv=FuC𝑡uHomeoJ𝑡U
16 10 15 anbi12d k=Us=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡ks=F-1Uusvsuuv=FuC𝑡uHomeoJ𝑡U
17 16 rabbidv k=Us𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k=s𝒫C|s=F-1Uusvsuuv=FuC𝑡uHomeoJ𝑡U
18 17 1 fvmptg UJs𝒫C|s=F-1Uusvsuuv=FuC𝑡uHomeoJ𝑡UVSU=s𝒫C|s=F-1Uusvsuuv=FuC𝑡uHomeoJ𝑡U
19 4 8 18 syl2anr CVUJSU=s𝒫C|s=F-1Uusvsuuv=FuC𝑡uHomeoJ𝑡U
20 19 eleq2d CVUJTSUTs𝒫C|s=F-1Uusvsuuv=FuC𝑡uHomeoJ𝑡U
21 unieq s=Ts=T
22 21 eqeq1d s=Ts=F-1UT=F-1U
23 difeq1 s=Tsu=Tu
24 23 raleqdv s=Tvsuuv=vTuuv=
25 24 anbi1d s=Tvsuuv=FuC𝑡uHomeoJ𝑡UvTuuv=FuC𝑡uHomeoJ𝑡U
26 25 raleqbi1dv s=Tusvsuuv=FuC𝑡uHomeoJ𝑡UuTvTuuv=FuC𝑡uHomeoJ𝑡U
27 22 26 anbi12d s=Ts=F-1Uusvsuuv=FuC𝑡uHomeoJ𝑡UT=F-1UuTvTuuv=FuC𝑡uHomeoJ𝑡U
28 27 elrab Ts𝒫C|s=F-1Uusvsuuv=FuC𝑡uHomeoJ𝑡UT𝒫CT=F-1UuTvTuuv=FuC𝑡uHomeoJ𝑡U
29 eldifsn T𝒫CT𝒫CT
30 elpw2g CVT𝒫CTC
31 30 adantr CVUJT𝒫CTC
32 31 anbi1d CVUJT𝒫CTTCT
33 29 32 bitrid CVUJT𝒫CTCT
34 33 anbi1d CVUJT𝒫CT=F-1UuTvTuuv=FuC𝑡uHomeoJ𝑡UTCTT=F-1UuTvTuuv=FuC𝑡uHomeoJ𝑡U
35 28 34 bitrid CVUJTs𝒫C|s=F-1Uusvsuuv=FuC𝑡uHomeoJ𝑡UTCTT=F-1UuTvTuuv=FuC𝑡uHomeoJ𝑡U
36 20 35 bitrd CVUJTSUTCTT=F-1UuTvTuuv=FuC𝑡uHomeoJ𝑡U
37 36 biimprd CVUJTCTT=F-1UuTvTuuv=FuC𝑡uHomeoJ𝑡UTSU
38 37 expimpd CVUJTCTT=F-1UuTvTuuv=FuC𝑡uHomeoJ𝑡UTSU
39 3 38 biimtrid CVUJTCTT=F-1UuTvTuuv=FuC𝑡uHomeoJ𝑡UTSU
40 2 39 impbid2 CVTSUUJTCTT=F-1UuTvTuuv=FuC𝑡uHomeoJ𝑡U