| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cyccom.c |
|
| 2 |
|
cyccom.d |
|
| 3 |
|
cyccom.x |
|
| 4 |
|
cyccom.y |
|
| 5 |
|
cyccom.z |
|
| 6 |
|
eqeq1 |
|
| 7 |
6
|
rexbidv |
|
| 8 |
7
|
rspccv |
|
| 9 |
1 8
|
syl |
|
| 10 |
|
eqeq1 |
|
| 11 |
10
|
rexbidv |
|
| 12 |
11
|
rspccv |
|
| 13 |
1 12
|
syl |
|
| 14 |
|
oveq1 |
|
| 15 |
14
|
eqeq2d |
|
| 16 |
15
|
cbvrexvw |
|
| 17 |
|
reeanv |
|
| 18 |
5
|
sseld |
|
| 19 |
18
|
com12 |
|
| 20 |
19
|
adantr |
|
| 21 |
20
|
impcom |
|
| 22 |
5
|
sseld |
|
| 23 |
22
|
a1d |
|
| 24 |
23
|
imp32 |
|
| 25 |
21 24
|
addcomd |
|
| 26 |
25
|
oveq1d |
|
| 27 |
|
simpr |
|
| 28 |
2
|
adantr |
|
| 29 |
|
oveq1 |
|
| 30 |
29
|
oveq1d |
|
| 31 |
|
oveq1 |
|
| 32 |
31
|
oveq1d |
|
| 33 |
30 32
|
eqeq12d |
|
| 34 |
|
oveq2 |
|
| 35 |
34
|
oveq1d |
|
| 36 |
|
oveq1 |
|
| 37 |
36
|
oveq2d |
|
| 38 |
35 37
|
eqeq12d |
|
| 39 |
33 38
|
rspc2va |
|
| 40 |
27 28 39
|
syl2anc |
|
| 41 |
27
|
ancomd |
|
| 42 |
|
oveq1 |
|
| 43 |
42
|
oveq1d |
|
| 44 |
|
oveq1 |
|
| 45 |
44
|
oveq1d |
|
| 46 |
43 45
|
eqeq12d |
|
| 47 |
|
oveq2 |
|
| 48 |
47
|
oveq1d |
|
| 49 |
|
oveq1 |
|
| 50 |
49
|
oveq2d |
|
| 51 |
48 50
|
eqeq12d |
|
| 52 |
46 51
|
rspc2va |
|
| 53 |
41 28 52
|
syl2anc |
|
| 54 |
26 40 53
|
3eqtr3d |
|
| 55 |
|
oveq12 |
|
| 56 |
|
oveq12 |
|
| 57 |
56
|
ancoms |
|
| 58 |
55 57
|
eqeq12d |
|
| 59 |
54 58
|
syl5ibrcom |
|
| 60 |
59
|
rexlimdvva |
|
| 61 |
17 60
|
biimtrrid |
|
| 62 |
61
|
expd |
|
| 63 |
16 62
|
syl7bi |
|
| 64 |
13 63
|
syld |
|
| 65 |
64
|
com23 |
|
| 66 |
9 65
|
syld |
|
| 67 |
4 3 66
|
mp2d |
|