Description: Lemma for cycpmfv1 and cycpmfv2 . (Contributed by Thierry Arnoux, 22-Sep-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tocycval.1 | |
|
tocycfv.d | |
||
tocycfv.w | |
||
tocycfv.1 | |
||
cycpmfvlem.1 | |
||
Assertion | cycpmfvlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tocycval.1 | |
|
2 | tocycfv.d | |
|
3 | tocycfv.w | |
|
4 | tocycfv.1 | |
|
5 | cycpmfvlem.1 | |
|
6 | 1 2 3 4 | tocycfv | |
7 | 6 | fveq1d | |
8 | f1oi | |
|
9 | f1ofn | |
|
10 | 8 9 | mp1i | |
11 | 1zzd | |
|
12 | cshwf | |
|
13 | 3 11 12 | syl2anc | |
14 | 13 | ffnd | |
15 | df-f1 | |
|
16 | 4 15 | sylib | |
17 | 16 | simprd | |
18 | 17 | funfnd | |
19 | df-rn | |
|
20 | 19 | fneq2i | |
21 | 18 20 | sylibr | |
22 | dfdm4 | |
|
23 | 22 | eqimss2i | |
24 | wrdfn | |
|
25 | 3 24 | syl | |
26 | 25 | fndmd | |
27 | 23 26 | sseqtrid | |
28 | fnco | |
|
29 | 14 21 27 28 | syl3anc | |
30 | disjdifr | |
|
31 | 30 | a1i | |
32 | fnfvelrn | |
|
33 | 25 5 32 | syl2anc | |
34 | fvun2 | |
|
35 | 10 29 31 33 34 | syl112anc | |
36 | 7 35 | eqtrd | |