Metamath Proof Explorer


Theorem cycpmfvlem

Description: Lemma for cycpmfv1 and cycpmfv2 . (Contributed by Thierry Arnoux, 22-Sep-2023)

Ref Expression
Hypotheses tocycval.1 C=toCycD
tocycfv.d φDV
tocycfv.w φWWordD
tocycfv.1 φW:domW1-1D
cycpmfvlem.1 φN0..^W
Assertion cycpmfvlem φCWWN=WcyclShift1W-1WN

Proof

Step Hyp Ref Expression
1 tocycval.1 C=toCycD
2 tocycfv.d φDV
3 tocycfv.w φWWordD
4 tocycfv.1 φW:domW1-1D
5 cycpmfvlem.1 φN0..^W
6 1 2 3 4 tocycfv φCW=IDranWWcyclShift1W-1
7 6 fveq1d φCWWN=IDranWWcyclShift1W-1WN
8 f1oi IDranW:DranW1-1 ontoDranW
9 f1ofn IDranW:DranW1-1 ontoDranWIDranWFnDranW
10 8 9 mp1i φIDranWFnDranW
11 1zzd φ1
12 cshwf WWordD1WcyclShift1:0..^WD
13 3 11 12 syl2anc φWcyclShift1:0..^WD
14 13 ffnd φWcyclShift1Fn0..^W
15 df-f1 W:domW1-1DW:domWDFunW-1
16 4 15 sylib φW:domWDFunW-1
17 16 simprd φFunW-1
18 17 funfnd φW-1FndomW-1
19 df-rn ranW=domW-1
20 19 fneq2i W-1FnranWW-1FndomW-1
21 18 20 sylibr φW-1FnranW
22 dfdm4 domW=ranW-1
23 22 eqimss2i ranW-1domW
24 wrdfn WWordDWFn0..^W
25 3 24 syl φWFn0..^W
26 25 fndmd φdomW=0..^W
27 23 26 sseqtrid φranW-10..^W
28 fnco WcyclShift1Fn0..^WW-1FnranWranW-10..^WWcyclShift1W-1FnranW
29 14 21 27 28 syl3anc φWcyclShift1W-1FnranW
30 disjdifr DranWranW=
31 30 a1i φDranWranW=
32 fnfvelrn WFn0..^WN0..^WWNranW
33 25 5 32 syl2anc φWNranW
34 fvun2 IDranWFnDranWWcyclShift1W-1FnranWDranWranW=WNranWIDranWWcyclShift1W-1WN=WcyclShift1W-1WN
35 10 29 31 33 34 syl112anc φIDranWWcyclShift1W-1WN=WcyclShift1W-1WN
36 7 35 eqtrd φCWWN=WcyclShift1W-1WN