Metamath Proof Explorer


Theorem cznnring

Description: The ring constructed from a Z/nZ structure with 1 < n by replacing the (multiplicative) ring operation by a constant operation is not a unital ring. (Contributed by AV, 17-Feb-2020)

Ref Expression
Hypotheses cznrng.y Y = /N
cznrng.b B = Base Y
cznrng.x X = Y sSet ndx x B , y B C
cznrng.0 0 ˙ = 0 Y
Assertion cznnring N 2 C B X Ring

Proof

Step Hyp Ref Expression
1 cznrng.y Y = /N
2 cznrng.b B = Base Y
3 cznrng.x X = Y sSet ndx x B , y B C
4 cznrng.0 0 ˙ = 0 Y
5 eqid mulGrp X = mulGrp X
6 1 2 3 cznrnglem B = Base X
7 5 6 mgpbas B = Base mulGrp X
8 3 fveq2i mulGrp X = mulGrp Y sSet ndx x B , y B C
9 1 fvexi Y V
10 2 fvexi B V
11 10 10 mpoex x B , y B C V
12 mulrid 𝑟 = Slot ndx
13 12 setsid Y V x B , y B C V x B , y B C = Y sSet ndx x B , y B C
14 9 11 13 mp2an x B , y B C = Y sSet ndx x B , y B C
15 8 14 mgpplusg x B , y B C = + mulGrp X
16 15 eqcomi + mulGrp X = x B , y B C
17 simpr N 2 C B C B
18 eluz2 N 2 2 N 2 N
19 1lt2 1 < 2
20 1red N 1
21 2re 2
22 21 a1i N 2
23 zre N N
24 ltletr 1 2 N 1 < 2 2 N 1 < N
25 20 22 23 24 syl3anc N 1 < 2 2 N 1 < N
26 25 expcomd N 2 N 1 < 2 1 < N
27 26 a1i 2 N 2 N 1 < 2 1 < N
28 27 3imp 2 N 2 N 1 < 2 1 < N
29 19 28 mpi 2 N 2 N 1 < N
30 18 29 sylbi N 2 1 < N
31 eluz2nn N 2 N
32 1 2 znhash N B = N
33 31 32 syl N 2 B = N
34 30 33 breqtrrd N 2 1 < B
35 34 adantr N 2 C B 1 < B
36 7 16 17 35 copisnmnd N 2 C B mulGrp X Mnd
37 df-nel mulGrp X Mnd ¬ mulGrp X Mnd
38 36 37 sylib N 2 C B ¬ mulGrp X Mnd
39 38 intn3an2d N 2 C B ¬ X Grp mulGrp X Mnd a B b B c B a Y sSet ndx x B , y B C b + X c = a Y sSet ndx x B , y B C b + X a Y sSet ndx x B , y B C c a + X b Y sSet ndx x B , y B C c = a Y sSet ndx x B , y B C c + X b Y sSet ndx x B , y B C c
40 eqid + X = + X
41 3 eqcomi Y sSet ndx x B , y B C = X
42 41 fveq2i Y sSet ndx x B , y B C = X
43 6 5 40 42 isring X Ring X Grp mulGrp X Mnd a B b B c B a Y sSet ndx x B , y B C b + X c = a Y sSet ndx x B , y B C b + X a Y sSet ndx x B , y B C c a + X b Y sSet ndx x B , y B C c = a Y sSet ndx x B , y B C c + X b Y sSet ndx x B , y B C c
44 39 43 sylnibr N 2 C B ¬ X Ring
45 df-nel X Ring ¬ X Ring
46 44 45 sylibr N 2 C B X Ring