Description: The ring constructed from a Z/nZ structure with 1 < n by replacing the (multiplicative) ring operation by a constant operation is not a unital ring. (Contributed by AV, 17-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cznrng.y | |
|
cznrng.b | |
||
cznrng.x | |
||
cznrng.0 | |
||
Assertion | cznnring | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cznrng.y | |
|
2 | cznrng.b | |
|
3 | cznrng.x | |
|
4 | cznrng.0 | |
|
5 | eqid | |
|
6 | 1 2 3 | cznrnglem | |
7 | 5 6 | mgpbas | |
8 | 3 | fveq2i | |
9 | 1 | fvexi | |
10 | 2 | fvexi | |
11 | 10 10 | mpoex | |
12 | mulridx | |
|
13 | 12 | setsid | |
14 | 9 11 13 | mp2an | |
15 | 8 14 | mgpplusg | |
16 | 15 | eqcomi | |
17 | simpr | |
|
18 | eluz2 | |
|
19 | 1lt2 | |
|
20 | 1red | |
|
21 | 2re | |
|
22 | 21 | a1i | |
23 | zre | |
|
24 | ltletr | |
|
25 | 20 22 23 24 | syl3anc | |
26 | 25 | expcomd | |
27 | 26 | a1i | |
28 | 27 | 3imp | |
29 | 19 28 | mpi | |
30 | 18 29 | sylbi | |
31 | eluz2nn | |
|
32 | 1 2 | znhash | |
33 | 31 32 | syl | |
34 | 30 33 | breqtrrd | |
35 | 34 | adantr | |
36 | 7 16 17 35 | copisnmnd | |
37 | df-nel | |
|
38 | 36 37 | sylib | |
39 | 38 | intn3an2d | |
40 | eqid | |
|
41 | 3 | eqcomi | |
42 | 41 | fveq2i | |
43 | 6 5 40 42 | isring | |
44 | 39 43 | sylnibr | |
45 | df-nel | |
|
46 | 44 45 | sylibr | |