Metamath Proof Explorer


Theorem cznnring

Description: The ring constructed from a Z/nZ structure with 1 < n by replacing the (multiplicative) ring operation by a constant operation is not a unital ring. (Contributed by AV, 17-Feb-2020)

Ref Expression
Hypotheses cznrng.y Y=/N
cznrng.b B=BaseY
cznrng.x X=YsSetndxxB,yBC
cznrng.0 0˙=0Y
Assertion cznnring N2CBXRing

Proof

Step Hyp Ref Expression
1 cznrng.y Y=/N
2 cznrng.b B=BaseY
3 cznrng.x X=YsSetndxxB,yBC
4 cznrng.0 0˙=0Y
5 eqid mulGrpX=mulGrpX
6 1 2 3 cznrnglem B=BaseX
7 5 6 mgpbas B=BasemulGrpX
8 3 fveq2i mulGrpX=mulGrpYsSetndxxB,yBC
9 1 fvexi YV
10 2 fvexi BV
11 10 10 mpoex xB,yBCV
12 mulridx 𝑟=Slotndx
13 12 setsid YVxB,yBCVxB,yBC=YsSetndxxB,yBC
14 9 11 13 mp2an xB,yBC=YsSetndxxB,yBC
15 8 14 mgpplusg xB,yBC=+mulGrpX
16 15 eqcomi +mulGrpX=xB,yBC
17 simpr N2CBCB
18 eluz2 N22N2N
19 1lt2 1<2
20 1red N1
21 2re 2
22 21 a1i N2
23 zre NN
24 ltletr 12N1<22N1<N
25 20 22 23 24 syl3anc N1<22N1<N
26 25 expcomd N2N1<21<N
27 26 a1i 2N2N1<21<N
28 27 3imp 2N2N1<21<N
29 19 28 mpi 2N2N1<N
30 18 29 sylbi N21<N
31 eluz2nn N2N
32 1 2 znhash NB=N
33 31 32 syl N2B=N
34 30 33 breqtrrd N21<B
35 34 adantr N2CB1<B
36 7 16 17 35 copisnmnd N2CBmulGrpXMnd
37 df-nel mulGrpXMnd¬mulGrpXMnd
38 36 37 sylib N2CB¬mulGrpXMnd
39 38 intn3an2d N2CB¬XGrpmulGrpXMndaBbBcBaYsSetndxxB,yBCb+Xc=aYsSetndxxB,yBCb+XaYsSetndxxB,yBCca+XbYsSetndxxB,yBCc=aYsSetndxxB,yBCc+XbYsSetndxxB,yBCc
40 eqid +X=+X
41 3 eqcomi YsSetndxxB,yBC=X
42 41 fveq2i YsSetndxxB,yBC=X
43 6 5 40 42 isring XRingXGrpmulGrpXMndaBbBcBaYsSetndxxB,yBCb+Xc=aYsSetndxxB,yBCb+XaYsSetndxxB,yBCca+XbYsSetndxxB,yBCc=aYsSetndxxB,yBCc+XbYsSetndxxB,yBCc
44 39 43 sylnibr N2CB¬XRing
45 df-nel XRing¬XRing
46 44 45 sylibr N2CBXRing