Description: Lemma for dath . The atoms D , E , and F form a line of perspectivity. This is Desargues's theorem for the special case where planes Y and Z are different. (Contributed by NM, 7-Aug-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dalema.ph | |
|
dalemc.l | |
||
dalemc.j | |
||
dalemc.a | |
||
dalem16.m | |
||
dalem16.o | |
||
dalem16.y | |
||
dalem16.z | |
||
dalem16.d | |
||
dalem16.e | |
||
dalem16.f | |
||
Assertion | dalem16 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalema.ph | |
|
2 | dalemc.l | |
|
3 | dalemc.j | |
|
4 | dalemc.a | |
|
5 | dalem16.m | |
|
6 | dalem16.o | |
|
7 | dalem16.y | |
|
8 | dalem16.z | |
|
9 | dalem16.d | |
|
10 | dalem16.e | |
|
11 | dalem16.f | |
|
12 | eqid | |
|
13 | 1 2 3 4 5 6 7 8 12 11 | dalem12 | |
14 | 13 | adantr | |
15 | 1 2 3 4 5 6 7 8 12 9 | dalem10 | |
16 | 1 2 3 4 5 6 7 8 12 10 | dalem11 | |
17 | 1 | dalemkelat | |
18 | 1 2 3 4 5 6 7 8 9 | dalemdea | |
19 | eqid | |
|
20 | 19 4 | atbase | |
21 | 18 20 | syl | |
22 | 1 2 3 4 5 6 7 8 10 | dalemeea | |
23 | 19 4 | atbase | |
24 | 22 23 | syl | |
25 | 1 6 | dalemyeb | |
26 | 1 | dalemzeo | |
27 | 19 6 | lplnbase | |
28 | 26 27 | syl | |
29 | 19 5 | latmcl | |
30 | 17 25 28 29 | syl3anc | |
31 | 19 2 3 | latjle12 | |
32 | 17 21 24 30 31 | syl13anc | |
33 | 15 16 32 | mpbi2and | |
34 | 33 | adantr | |
35 | 1 | dalemkehl | |
36 | 35 | adantr | |
37 | 1 2 3 4 5 6 7 8 9 10 | dalemdnee | |
38 | eqid | |
|
39 | 3 4 38 | llni2 | |
40 | 35 18 22 37 39 | syl31anc | |
41 | 40 | adantr | |
42 | 1 2 3 4 5 38 6 7 8 12 | dalem15 | |
43 | 2 38 | llncmp | |
44 | 36 41 42 43 | syl3anc | |
45 | 34 44 | mpbid | |
46 | 14 45 | breqtrrd | |