Metamath Proof Explorer


Theorem dalem16

Description: Lemma for dath . The atoms D , E , and F form a line of perspectivity. This is Desargues's theorem for the special case where planes Y and Z are different. (Contributed by NM, 7-Aug-2012)

Ref Expression
Hypotheses dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalemc.l ˙=K
dalemc.j ˙=joinK
dalemc.a A=AtomsK
dalem16.m ˙=meetK
dalem16.o O=LPlanesK
dalem16.y Y=P˙Q˙R
dalem16.z Z=S˙T˙U
dalem16.d D=P˙Q˙S˙T
dalem16.e E=Q˙R˙T˙U
dalem16.f F=R˙P˙U˙S
Assertion dalem16 φYZF˙D˙E

Proof

Step Hyp Ref Expression
1 dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalemc.l ˙=K
3 dalemc.j ˙=joinK
4 dalemc.a A=AtomsK
5 dalem16.m ˙=meetK
6 dalem16.o O=LPlanesK
7 dalem16.y Y=P˙Q˙R
8 dalem16.z Z=S˙T˙U
9 dalem16.d D=P˙Q˙S˙T
10 dalem16.e E=Q˙R˙T˙U
11 dalem16.f F=R˙P˙U˙S
12 eqid Y˙Z=Y˙Z
13 1 2 3 4 5 6 7 8 12 11 dalem12 φF˙Y˙Z
14 13 adantr φYZF˙Y˙Z
15 1 2 3 4 5 6 7 8 12 9 dalem10 φD˙Y˙Z
16 1 2 3 4 5 6 7 8 12 10 dalem11 φE˙Y˙Z
17 1 dalemkelat φKLat
18 1 2 3 4 5 6 7 8 9 dalemdea φDA
19 eqid BaseK=BaseK
20 19 4 atbase DADBaseK
21 18 20 syl φDBaseK
22 1 2 3 4 5 6 7 8 10 dalemeea φEA
23 19 4 atbase EAEBaseK
24 22 23 syl φEBaseK
25 1 6 dalemyeb φYBaseK
26 1 dalemzeo φZO
27 19 6 lplnbase ZOZBaseK
28 26 27 syl φZBaseK
29 19 5 latmcl KLatYBaseKZBaseKY˙ZBaseK
30 17 25 28 29 syl3anc φY˙ZBaseK
31 19 2 3 latjle12 KLatDBaseKEBaseKY˙ZBaseKD˙Y˙ZE˙Y˙ZD˙E˙Y˙Z
32 17 21 24 30 31 syl13anc φD˙Y˙ZE˙Y˙ZD˙E˙Y˙Z
33 15 16 32 mpbi2and φD˙E˙Y˙Z
34 33 adantr φYZD˙E˙Y˙Z
35 1 dalemkehl φKHL
36 35 adantr φYZKHL
37 1 2 3 4 5 6 7 8 9 10 dalemdnee φDE
38 eqid LLinesK=LLinesK
39 3 4 38 llni2 KHLDAEADED˙ELLinesK
40 35 18 22 37 39 syl31anc φD˙ELLinesK
41 40 adantr φYZD˙ELLinesK
42 1 2 3 4 5 38 6 7 8 12 dalem15 φYZY˙ZLLinesK
43 2 38 llncmp KHLD˙ELLinesKY˙ZLLinesKD˙E˙Y˙ZD˙E=Y˙Z
44 36 41 42 43 syl3anc φYZD˙E˙Y˙ZD˙E=Y˙Z
45 34 44 mpbid φYZD˙E=Y˙Z
46 14 45 breqtrrd φYZF˙D˙E