Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
|
2 |
|
rpvmasum.l |
|
3 |
|
rpvmasum.a |
|
4 |
|
rpvmasum.g |
|
5 |
|
rpvmasum.d |
|
6 |
|
rpvmasum.1 |
|
7 |
|
dchrisum.b |
|
8 |
|
dchrisum.n1 |
|
9 |
|
dchrisum.2 |
|
10 |
|
dchrisum.3 |
|
11 |
|
dchrisum.4 |
|
12 |
|
dchrisum.5 |
|
13 |
|
dchrisum.6 |
|
14 |
|
dchrisum.7 |
|
15 |
|
fzofi |
|
16 |
|
fzofi |
|
17 |
16
|
a1i |
|
18 |
7
|
adantr |
|
19 |
|
elfzoelz |
|
20 |
19
|
adantl |
|
21 |
4 1 5 2 18 20
|
dchrzrhcl |
|
22 |
17 21
|
fsumcl |
|
23 |
22
|
abscld |
|
24 |
23
|
ralrimivw |
|
25 |
|
fimaxre3 |
|
26 |
15 24 25
|
sylancr |
|
27 |
3
|
adantr |
|
28 |
7
|
adantr |
|
29 |
8
|
adantr |
|
30 |
10
|
adantr |
|
31 |
11
|
adantlr |
|
32 |
12
|
3adant1r |
|
33 |
13
|
adantr |
|
34 |
|
simprl |
|
35 |
|
simprr |
|
36 |
|
2fveq3 |
|
37 |
36
|
cbvsumv |
|
38 |
|
oveq2 |
|
39 |
38
|
sumeq1d |
|
40 |
37 39
|
eqtrid |
|
41 |
40
|
fveq2d |
|
42 |
41
|
breq1d |
|
43 |
42
|
cbvralvw |
|
44 |
35 43
|
sylib |
|
45 |
1 2 27 4 5 6 28 29 9 30 31 32 33 14 34 44
|
dchrisumlem3 |
|
46 |
26 45
|
rexlimddv |
|