Description: If n e. [ M , +oo ) |-> A ( n ) is a positive decreasing function approaching zero, then the infinite sum sum_ n , X ( n ) A ( n ) is convergent, with the partial sum sum_ n <_ x , X ( n ) A ( n ) within O ( A ( M ) ) of the limit T . Lemma 9.4.1 of Shapiro, p. 377. (Contributed by Mario Carneiro, 2-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rpvmasum.z | |
|
rpvmasum.l | |
||
rpvmasum.a | |
||
rpvmasum.g | |
||
rpvmasum.d | |
||
rpvmasum.1 | |
||
dchrisum.b | |
||
dchrisum.n1 | |
||
dchrisum.2 | |
||
dchrisum.3 | |
||
dchrisum.4 | |
||
dchrisum.5 | |
||
dchrisum.6 | |
||
dchrisum.7 | |
||
Assertion | dchrisum | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpvmasum.z | |
|
2 | rpvmasum.l | |
|
3 | rpvmasum.a | |
|
4 | rpvmasum.g | |
|
5 | rpvmasum.d | |
|
6 | rpvmasum.1 | |
|
7 | dchrisum.b | |
|
8 | dchrisum.n1 | |
|
9 | dchrisum.2 | |
|
10 | dchrisum.3 | |
|
11 | dchrisum.4 | |
|
12 | dchrisum.5 | |
|
13 | dchrisum.6 | |
|
14 | dchrisum.7 | |
|
15 | fzofi | |
|
16 | fzofi | |
|
17 | 16 | a1i | |
18 | 7 | adantr | |
19 | elfzoelz | |
|
20 | 19 | adantl | |
21 | 4 1 5 2 18 20 | dchrzrhcl | |
22 | 17 21 | fsumcl | |
23 | 22 | abscld | |
24 | 23 | ralrimivw | |
25 | fimaxre3 | |
|
26 | 15 24 25 | sylancr | |
27 | 3 | adantr | |
28 | 7 | adantr | |
29 | 8 | adantr | |
30 | 10 | adantr | |
31 | 11 | adantlr | |
32 | 12 | 3adant1r | |
33 | 13 | adantr | |
34 | simprl | |
|
35 | simprr | |
|
36 | 2fveq3 | |
|
37 | 36 | cbvsumv | |
38 | oveq2 | |
|
39 | 38 | sumeq1d | |
40 | 37 39 | eqtrid | |
41 | 40 | fveq2d | |
42 | 41 | breq1d | |
43 | 42 | cbvralvw | |
44 | 35 43 | sylib | |
45 | 1 2 27 4 5 6 28 29 9 30 31 32 33 14 34 44 | dchrisumlem3 | |
46 | 26 45 | rexlimddv | |