| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpvmasum.z |
|
| 2 |
|
rpvmasum.l |
|
| 3 |
|
rpvmasum.a |
|
| 4 |
|
rpvmasum.g |
|
| 5 |
|
rpvmasum.d |
|
| 6 |
|
rpvmasum.1 |
|
| 7 |
|
dchrisum.b |
|
| 8 |
|
dchrisum.n1 |
|
| 9 |
|
dchrisum.2 |
|
| 10 |
|
dchrisum.3 |
|
| 11 |
|
dchrisum.4 |
|
| 12 |
|
dchrisum.5 |
|
| 13 |
|
dchrisum.6 |
|
| 14 |
|
dchrisum.7 |
|
| 15 |
|
fzofi |
|
| 16 |
|
fzofi |
|
| 17 |
16
|
a1i |
|
| 18 |
7
|
adantr |
|
| 19 |
|
elfzoelz |
|
| 20 |
19
|
adantl |
|
| 21 |
4 1 5 2 18 20
|
dchrzrhcl |
|
| 22 |
17 21
|
fsumcl |
|
| 23 |
22
|
abscld |
|
| 24 |
23
|
ralrimivw |
|
| 25 |
|
fimaxre3 |
|
| 26 |
15 24 25
|
sylancr |
|
| 27 |
3
|
adantr |
|
| 28 |
7
|
adantr |
|
| 29 |
8
|
adantr |
|
| 30 |
10
|
adantr |
|
| 31 |
11
|
adantlr |
|
| 32 |
12
|
3adant1r |
|
| 33 |
13
|
adantr |
|
| 34 |
|
simprl |
|
| 35 |
|
simprr |
|
| 36 |
|
2fveq3 |
|
| 37 |
36
|
cbvsumv |
|
| 38 |
|
oveq2 |
|
| 39 |
38
|
sumeq1d |
|
| 40 |
37 39
|
eqtrid |
|
| 41 |
40
|
fveq2d |
|
| 42 |
41
|
breq1d |
|
| 43 |
42
|
cbvralvw |
|
| 44 |
35 43
|
sylib |
|
| 45 |
1 2 27 4 5 6 28 29 9 30 31 32 33 14 34 44
|
dchrisumlem3 |
|
| 46 |
26 45
|
rexlimddv |
|