Metamath Proof Explorer


Theorem dchrisum

Description: If n e. [ M , +oo ) |-> A ( n ) is a positive decreasing function approaching zero, then the infinite sum sum_ n , X ( n ) A ( n ) is convergent, with the partial sum sum_ n <_ x , X ( n ) A ( n ) within O ( A ( M ) ) of the limit T . Lemma 9.4.1 of Shapiro, p. 377. (Contributed by Mario Carneiro, 2-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z=/N
rpvmasum.l L=ℤRHomZ
rpvmasum.a φN
rpvmasum.g G=DChrN
rpvmasum.d D=BaseG
rpvmasum.1 1˙=0G
dchrisum.b φXD
dchrisum.n1 φX1˙
dchrisum.2 n=xA=B
dchrisum.3 φM
dchrisum.4 φn+A
dchrisum.5 φn+x+MnnxBA
dchrisum.6 φn+A0
dchrisum.7 F=nXLnA
Assertion dchrisum φtc0+∞seq1+FtxM+∞seq1+FxtcB

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z=/N
2 rpvmasum.l L=ℤRHomZ
3 rpvmasum.a φN
4 rpvmasum.g G=DChrN
5 rpvmasum.d D=BaseG
6 rpvmasum.1 1˙=0G
7 dchrisum.b φXD
8 dchrisum.n1 φX1˙
9 dchrisum.2 n=xA=B
10 dchrisum.3 φM
11 dchrisum.4 φn+A
12 dchrisum.5 φn+x+MnnxBA
13 dchrisum.6 φn+A0
14 dchrisum.7 F=nXLnA
15 fzofi 0..^NFin
16 fzofi 0..^uFin
17 16 a1i φ0..^uFin
18 7 adantr φm0..^uXD
19 elfzoelz m0..^um
20 19 adantl φm0..^um
21 4 1 5 2 18 20 dchrzrhcl φm0..^uXLm
22 17 21 fsumcl φm0..^uXLm
23 22 abscld φm0..^uXLm
24 23 ralrimivw φu0..^Nm0..^uXLm
25 fimaxre3 0..^NFinu0..^Nm0..^uXLmru0..^Nm0..^uXLmr
26 15 24 25 sylancr φru0..^Nm0..^uXLmr
27 3 adantr φru0..^Nm0..^uXLmrN
28 7 adantr φru0..^Nm0..^uXLmrXD
29 8 adantr φru0..^Nm0..^uXLmrX1˙
30 10 adantr φru0..^Nm0..^uXLmrM
31 11 adantlr φru0..^Nm0..^uXLmrn+A
32 12 3adant1r φru0..^Nm0..^uXLmrn+x+MnnxBA
33 13 adantr φru0..^Nm0..^uXLmrn+A0
34 simprl φru0..^Nm0..^uXLmrr
35 simprr φru0..^Nm0..^uXLmru0..^Nm0..^uXLmr
36 2fveq3 m=nXLm=XLn
37 36 cbvsumv m0..^uXLm=n0..^uXLn
38 oveq2 u=i0..^u=0..^i
39 38 sumeq1d u=in0..^uXLn=n0..^iXLn
40 37 39 eqtrid u=im0..^uXLm=n0..^iXLn
41 40 fveq2d u=im0..^uXLm=n0..^iXLn
42 41 breq1d u=im0..^uXLmrn0..^iXLnr
43 42 cbvralvw u0..^Nm0..^uXLmri0..^Nn0..^iXLnr
44 35 43 sylib φru0..^Nm0..^uXLmri0..^Nn0..^iXLnr
45 1 2 27 4 5 6 28 29 9 30 31 32 33 14 34 44 dchrisumlem3 φru0..^Nm0..^uXLmrtc0+∞seq1+FtxM+∞seq1+FxtcB
46 26 45 rexlimddv φtc0+∞seq1+FtxM+∞seq1+FxtcB