Metamath Proof Explorer


Theorem dchrvmasumlem3

Description: Lemma for dchrvmasum . (Contributed by Mario Carneiro, 3-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z = /N
rpvmasum.l L = ℤRHom Z
rpvmasum.a φ N
rpvmasum.g G = DChr N
rpvmasum.d D = Base G
rpvmasum.1 1 ˙ = 0 G
dchrisum.b φ X D
dchrisum.n1 φ X 1 ˙
dchrvmasum.f φ m + F
dchrvmasum.g m = x d F = K
dchrvmasum.c φ C 0 +∞
dchrvmasum.t φ T
dchrvmasum.1 φ m 3 +∞ F T C log m m
dchrvmasum.r φ R
dchrvmasum.2 φ m 1 3 F T R
Assertion dchrvmasumlem3 φ x + d = 1 x X L d μ d d K T 𝑂1

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z = /N
2 rpvmasum.l L = ℤRHom Z
3 rpvmasum.a φ N
4 rpvmasum.g G = DChr N
5 rpvmasum.d D = Base G
6 rpvmasum.1 1 ˙ = 0 G
7 dchrisum.b φ X D
8 dchrisum.n1 φ X 1 ˙
9 dchrvmasum.f φ m + F
10 dchrvmasum.g m = x d F = K
11 dchrvmasum.c φ C 0 +∞
12 dchrvmasum.t φ T
13 dchrvmasum.1 φ m 3 +∞ F T C log m m
14 dchrvmasum.r φ R
15 dchrvmasum.2 φ m 1 3 F T R
16 1red φ 1
17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 dchrvmasumlem2 φ x + d = 1 x K T d 𝑂1
18 fzfid φ x + 1 x Fin
19 10 eleq1d m = x d F K
20 9 ralrimiva φ m + F
21 20 ad2antrr φ x + d 1 x m + F
22 simpr φ x + x +
23 elfznn d 1 x d
24 23 nnrpd d 1 x d +
25 rpdivcl x + d + x d +
26 22 24 25 syl2an φ x + d 1 x x d +
27 19 21 26 rspcdva φ x + d 1 x K
28 12 ad2antrr φ x + d 1 x T
29 27 28 subcld φ x + d 1 x K T
30 29 abscld φ x + d 1 x K T
31 23 adantl φ x + d 1 x d
32 30 31 nndivred φ x + d 1 x K T d
33 18 32 fsumrecl φ x + d = 1 x K T d
34 7 ad2antrr φ x + d 1 x X D
35 elfzelz d 1 x d
36 35 adantl φ x + d 1 x d
37 4 1 5 2 34 36 dchrzrhcl φ x + d 1 x X L d
38 mucl d μ d
39 31 38 syl φ x + d 1 x μ d
40 39 zred φ x + d 1 x μ d
41 40 31 nndivred φ x + d 1 x μ d d
42 41 recnd φ x + d 1 x μ d d
43 37 42 mulcld φ x + d 1 x X L d μ d d
44 43 29 mulcld φ x + d 1 x X L d μ d d K T
45 18 44 fsumcl φ x + d = 1 x X L d μ d d K T
46 45 abscld φ x + d = 1 x X L d μ d d K T
47 33 recnd φ x + d = 1 x K T d
48 47 abscld φ x + d = 1 x K T d
49 44 abscld φ x + d 1 x X L d μ d d K T
50 18 49 fsumrecl φ x + d = 1 x X L d μ d d K T
51 18 44 fsumabs φ x + d = 1 x X L d μ d d K T d = 1 x X L d μ d d K T
52 43 abscld φ x + d 1 x X L d μ d d
53 31 nnrecred φ x + d 1 x 1 d
54 29 absge0d φ x + d 1 x 0 K T
55 37 42 absmuld φ x + d 1 x X L d μ d d = X L d μ d d
56 37 abscld φ x + d 1 x X L d
57 1red φ x + d 1 x 1
58 42 abscld φ x + d 1 x μ d d
59 37 absge0d φ x + d 1 x 0 X L d
60 42 absge0d φ x + d 1 x 0 μ d d
61 eqid Base Z = Base Z
62 3 nnnn0d φ N 0
63 1 61 2 znzrhfo N 0 L : onto Base Z
64 62 63 syl φ L : onto Base Z
65 fof L : onto Base Z L : Base Z
66 64 65 syl φ L : Base Z
67 66 ad2antrr φ x + d 1 x L : Base Z
68 67 36 ffvelrnd φ x + d 1 x L d Base Z
69 4 5 1 61 34 68 dchrabs2 φ x + d 1 x X L d 1
70 40 recnd φ x + d 1 x μ d
71 31 nncnd φ x + d 1 x d
72 31 nnne0d φ x + d 1 x d 0
73 70 71 72 absdivd φ x + d 1 x μ d d = μ d d
74 31 nnrpd φ x + d 1 x d +
75 74 rprege0d φ x + d 1 x d 0 d
76 absid d 0 d d = d
77 75 76 syl φ x + d 1 x d = d
78 77 oveq2d φ x + d 1 x μ d d = μ d d
79 73 78 eqtrd φ x + d 1 x μ d d = μ d d
80 70 abscld φ x + d 1 x μ d
81 mule1 d μ d 1
82 31 81 syl φ x + d 1 x μ d 1
83 80 57 74 82 lediv1dd φ x + d 1 x μ d d 1 d
84 79 83 eqbrtrd φ x + d 1 x μ d d 1 d
85 56 57 58 53 59 60 69 84 lemul12ad φ x + d 1 x X L d μ d d 1 1 d
86 53 recnd φ x + d 1 x 1 d
87 86 mulid2d φ x + d 1 x 1 1 d = 1 d
88 85 87 breqtrd φ x + d 1 x X L d μ d d 1 d
89 55 88 eqbrtrd φ x + d 1 x X L d μ d d 1 d
90 52 53 30 54 89 lemul1ad φ x + d 1 x X L d μ d d K T 1 d K T
91 43 29 absmuld φ x + d 1 x X L d μ d d K T = X L d μ d d K T
92 30 recnd φ x + d 1 x K T
93 92 71 72 divrec2d φ x + d 1 x K T d = 1 d K T
94 90 91 93 3brtr4d φ x + d 1 x X L d μ d d K T K T d
95 18 49 32 94 fsumle φ x + d = 1 x X L d μ d d K T d = 1 x K T d
96 46 50 33 51 95 letrd φ x + d = 1 x X L d μ d d K T d = 1 x K T d
97 33 leabsd φ x + d = 1 x K T d d = 1 x K T d
98 46 33 48 96 97 letrd φ x + d = 1 x X L d μ d d K T d = 1 x K T d
99 98 adantrr φ x + 1 x d = 1 x X L d μ d d K T d = 1 x K T d
100 16 17 33 45 99 o1le φ x + d = 1 x X L d μ d d K T 𝑂1