Metamath Proof Explorer


Theorem decpmataa0

Description: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix for the same power is 0 for almost all powers. (Contributed by AV, 3-Nov-2019) (Revised by AV, 3-Dec-2019)

Ref Expression
Hypotheses decpmate.p P = Poly 1 R
decpmate.c C = N Mat P
decpmate.b B = Base C
decpmatcl.a A = N Mat R
decpmatfsupp.0 0 ˙ = 0 A
Assertion decpmataa0 R Ring M B s 0 x 0 s < x M decompPMat x = 0 ˙

Proof

Step Hyp Ref Expression
1 decpmate.p P = Poly 1 R
2 decpmate.c C = N Mat P
3 decpmate.b B = Base C
4 decpmatcl.a A = N Mat R
5 decpmatfsupp.0 0 ˙ = 0 A
6 2 3 matrcl M B N Fin P V
7 6 simpld M B N Fin
8 7 adantl R Ring M B N Fin
9 simpl R Ring M B R Ring
10 simpr R Ring M B M B
11 eqid 0 R = 0 R
12 1 2 3 11 pmatcoe1fsupp N Fin R Ring M B s 0 x 0 s < x i N j N coe 1 i M j x = 0 R
13 8 9 10 12 syl3anc R Ring M B s 0 x 0 s < x i N j N coe 1 i M j x = 0 R
14 eqid Base A = Base A
15 1 2 3 4 14 decpmatcl R Ring M B x 0 M decompPMat x Base A
16 15 3expa R Ring M B x 0 M decompPMat x Base A
17 8 9 jca R Ring M B N Fin R Ring
18 4 matring N Fin R Ring A Ring
19 14 5 ring0cl A Ring 0 ˙ Base A
20 17 18 19 3syl R Ring M B 0 ˙ Base A
21 20 adantr R Ring M B x 0 0 ˙ Base A
22 4 14 eqmat M decompPMat x Base A 0 ˙ Base A M decompPMat x = 0 ˙ i N j N i M decompPMat x j = i 0 ˙ j
23 16 21 22 syl2anc R Ring M B x 0 M decompPMat x = 0 ˙ i N j N i M decompPMat x j = i 0 ˙ j
24 df-3an R Ring M B x 0 R Ring M B x 0
25 1 2 3 decpmate R Ring M B x 0 i N j N i M decompPMat x j = coe 1 i M j x
26 24 25 sylanbr R Ring M B x 0 i N j N i M decompPMat x j = coe 1 i M j x
27 17 adantr R Ring M B x 0 N Fin R Ring
28 27 adantr R Ring M B x 0 i N j N N Fin R Ring
29 4 11 mat0op N Fin R Ring 0 A = a N , b N 0 R
30 5 29 eqtrid N Fin R Ring 0 ˙ = a N , b N 0 R
31 28 30 syl R Ring M B x 0 i N j N 0 ˙ = a N , b N 0 R
32 eqidd R Ring M B x 0 i N j N a = i b = j 0 R = 0 R
33 simpl i N j N i N
34 33 adantl R Ring M B x 0 i N j N i N
35 simpr i N j N j N
36 35 adantl R Ring M B x 0 i N j N j N
37 fvexd R Ring M B x 0 i N j N 0 R V
38 31 32 34 36 37 ovmpod R Ring M B x 0 i N j N i 0 ˙ j = 0 R
39 26 38 eqeq12d R Ring M B x 0 i N j N i M decompPMat x j = i 0 ˙ j coe 1 i M j x = 0 R
40 39 2ralbidva R Ring M B x 0 i N j N i M decompPMat x j = i 0 ˙ j i N j N coe 1 i M j x = 0 R
41 23 40 bitrd R Ring M B x 0 M decompPMat x = 0 ˙ i N j N coe 1 i M j x = 0 R
42 41 imbi2d R Ring M B x 0 s < x M decompPMat x = 0 ˙ s < x i N j N coe 1 i M j x = 0 R
43 42 ralbidva R Ring M B x 0 s < x M decompPMat x = 0 ˙ x 0 s < x i N j N coe 1 i M j x = 0 R
44 43 rexbidv R Ring M B s 0 x 0 s < x M decompPMat x = 0 ˙ s 0 x 0 s < x i N j N coe 1 i M j x = 0 R
45 13 44 mpbird R Ring M B s 0 x 0 s < x M decompPMat x = 0 ˙