Metamath Proof Explorer


Theorem decpmataa0

Description: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix for the same power is 0 for almost all powers. (Contributed by AV, 3-Nov-2019) (Revised by AV, 3-Dec-2019)

Ref Expression
Hypotheses decpmate.p P=Poly1R
decpmate.c C=NMatP
decpmate.b B=BaseC
decpmatcl.a A=NMatR
decpmatfsupp.0 0˙=0A
Assertion decpmataa0 RRingMBs0x0s<xMdecompPMatx=0˙

Proof

Step Hyp Ref Expression
1 decpmate.p P=Poly1R
2 decpmate.c C=NMatP
3 decpmate.b B=BaseC
4 decpmatcl.a A=NMatR
5 decpmatfsupp.0 0˙=0A
6 2 3 matrcl MBNFinPV
7 6 simpld MBNFin
8 7 adantl RRingMBNFin
9 simpl RRingMBRRing
10 simpr RRingMBMB
11 eqid 0R=0R
12 1 2 3 11 pmatcoe1fsupp NFinRRingMBs0x0s<xiNjNcoe1iMjx=0R
13 8 9 10 12 syl3anc RRingMBs0x0s<xiNjNcoe1iMjx=0R
14 eqid BaseA=BaseA
15 1 2 3 4 14 decpmatcl RRingMBx0MdecompPMatxBaseA
16 15 3expa RRingMBx0MdecompPMatxBaseA
17 8 9 jca RRingMBNFinRRing
18 4 matring NFinRRingARing
19 14 5 ring0cl ARing0˙BaseA
20 17 18 19 3syl RRingMB0˙BaseA
21 20 adantr RRingMBx00˙BaseA
22 4 14 eqmat MdecompPMatxBaseA0˙BaseAMdecompPMatx=0˙iNjNiMdecompPMatxj=i0˙j
23 16 21 22 syl2anc RRingMBx0MdecompPMatx=0˙iNjNiMdecompPMatxj=i0˙j
24 df-3an RRingMBx0RRingMBx0
25 1 2 3 decpmate RRingMBx0iNjNiMdecompPMatxj=coe1iMjx
26 24 25 sylanbr RRingMBx0iNjNiMdecompPMatxj=coe1iMjx
27 17 adantr RRingMBx0NFinRRing
28 27 adantr RRingMBx0iNjNNFinRRing
29 4 11 mat0op NFinRRing0A=aN,bN0R
30 5 29 eqtrid NFinRRing0˙=aN,bN0R
31 28 30 syl RRingMBx0iNjN0˙=aN,bN0R
32 eqidd RRingMBx0iNjNa=ib=j0R=0R
33 simpl iNjNiN
34 33 adantl RRingMBx0iNjNiN
35 simpr iNjNjN
36 35 adantl RRingMBx0iNjNjN
37 fvexd RRingMBx0iNjN0RV
38 31 32 34 36 37 ovmpod RRingMBx0iNjNi0˙j=0R
39 26 38 eqeq12d RRingMBx0iNjNiMdecompPMatxj=i0˙jcoe1iMjx=0R
40 39 2ralbidva RRingMBx0iNjNiMdecompPMatxj=i0˙jiNjNcoe1iMjx=0R
41 23 40 bitrd RRingMBx0MdecompPMatx=0˙iNjNcoe1iMjx=0R
42 41 imbi2d RRingMBx0s<xMdecompPMatx=0˙s<xiNjNcoe1iMjx=0R
43 42 ralbidva RRingMBx0s<xMdecompPMatx=0˙x0s<xiNjNcoe1iMjx=0R
44 43 rexbidv RRingMBs0x0s<xMdecompPMatx=0˙s0x0s<xiNjNcoe1iMjx=0R
45 13 44 mpbird RRingMBs0x0s<xMdecompPMatx=0˙