Description: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix for the same power is 0 for almost all powers. (Contributed by AV, 3-Nov-2019) (Revised by AV, 3-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | decpmate.p | |
|
decpmate.c | |
||
decpmate.b | |
||
decpmatcl.a | |
||
decpmatfsupp.0 | |
||
Assertion | decpmataa0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decpmate.p | |
|
2 | decpmate.c | |
|
3 | decpmate.b | |
|
4 | decpmatcl.a | |
|
5 | decpmatfsupp.0 | |
|
6 | 2 3 | matrcl | |
7 | 6 | simpld | |
8 | 7 | adantl | |
9 | simpl | |
|
10 | simpr | |
|
11 | eqid | |
|
12 | 1 2 3 11 | pmatcoe1fsupp | |
13 | 8 9 10 12 | syl3anc | |
14 | eqid | |
|
15 | 1 2 3 4 14 | decpmatcl | |
16 | 15 | 3expa | |
17 | 8 9 | jca | |
18 | 4 | matring | |
19 | 14 5 | ring0cl | |
20 | 17 18 19 | 3syl | |
21 | 20 | adantr | |
22 | 4 14 | eqmat | |
23 | 16 21 22 | syl2anc | |
24 | df-3an | |
|
25 | 1 2 3 | decpmate | |
26 | 24 25 | sylanbr | |
27 | 17 | adantr | |
28 | 27 | adantr | |
29 | 4 11 | mat0op | |
30 | 5 29 | eqtrid | |
31 | 28 30 | syl | |
32 | eqidd | |
|
33 | simpl | |
|
34 | 33 | adantl | |
35 | simpr | |
|
36 | 35 | adantl | |
37 | fvexd | |
|
38 | 31 32 34 36 37 | ovmpod | |
39 | 26 38 | eqeq12d | |
40 | 39 | 2ralbidva | |
41 | 23 40 | bitrd | |
42 | 41 | imbi2d | |
43 | 42 | ralbidva | |
44 | 43 | rexbidv | |
45 | 13 44 | mpbird | |