Metamath Proof Explorer


Theorem deg1mul2

Description: Degree of multiplication of two nonzero polynomials when the first leads with a nonzero-divisor coefficient. (Contributed by Stefan O'Rear, 26-Mar-2015)

Ref Expression
Hypotheses deg1mul2.d D=deg1R
deg1mul2.p P=Poly1R
deg1mul2.e E=RLRegR
deg1mul2.b B=BaseP
deg1mul2.t ·˙=P
deg1mul2.z 0˙=0P
deg1mul2.r φRRing
deg1mul2.fb φFB
deg1mul2.fz φF0˙
deg1mul2.fc φcoe1FDFE
deg1mul2.gb φGB
deg1mul2.gz φG0˙
Assertion deg1mul2 φDF·˙G=DF+DG

Proof

Step Hyp Ref Expression
1 deg1mul2.d D=deg1R
2 deg1mul2.p P=Poly1R
3 deg1mul2.e E=RLRegR
4 deg1mul2.b B=BaseP
5 deg1mul2.t ·˙=P
6 deg1mul2.z 0˙=0P
7 deg1mul2.r φRRing
8 deg1mul2.fb φFB
9 deg1mul2.fz φF0˙
10 deg1mul2.fc φcoe1FDFE
11 deg1mul2.gb φGB
12 deg1mul2.gz φG0˙
13 2 ply1ring RRingPRing
14 7 13 syl φPRing
15 4 5 ringcl PRingFBGBF·˙GB
16 14 8 11 15 syl3anc φF·˙GB
17 1 2 4 deg1xrcl F·˙GBDF·˙G*
18 16 17 syl φDF·˙G*
19 1 2 6 4 deg1nn0cl RRingFBF0˙DF0
20 7 8 9 19 syl3anc φDF0
21 1 2 6 4 deg1nn0cl RRingGBG0˙DG0
22 7 11 12 21 syl3anc φDG0
23 20 22 nn0addcld φDF+DG0
24 23 nn0red φDF+DG
25 24 rexrd φDF+DG*
26 20 nn0red φDF
27 26 leidd φDFDF
28 22 nn0red φDG
29 28 leidd φDGDG
30 2 1 7 4 5 8 11 20 22 27 29 deg1mulle2 φDF·˙GDF+DG
31 eqid R=R
32 2 5 31 4 1 6 7 8 9 11 12 coe1mul4 φcoe1F·˙GDF+DG=coe1FDFRcoe1GDG
33 eqid 0R=0R
34 eqid coe1G=coe1G
35 1 2 6 4 33 34 deg1ldg RRingGBG0˙coe1GDG0R
36 7 11 12 35 syl3anc φcoe1GDG0R
37 eqid BaseR=BaseR
38 34 4 2 37 coe1f GBcoe1G:0BaseR
39 11 38 syl φcoe1G:0BaseR
40 39 22 ffvelcdmd φcoe1GDGBaseR
41 3 37 31 33 rrgeq0i coe1FDFEcoe1GDGBaseRcoe1FDFRcoe1GDG=0Rcoe1GDG=0R
42 10 40 41 syl2anc φcoe1FDFRcoe1GDG=0Rcoe1GDG=0R
43 42 necon3d φcoe1GDG0Rcoe1FDFRcoe1GDG0R
44 36 43 mpd φcoe1FDFRcoe1GDG0R
45 32 44 eqnetrd φcoe1F·˙GDF+DG0R
46 eqid coe1F·˙G=coe1F·˙G
47 1 2 4 33 46 deg1ge F·˙GBDF+DG0coe1F·˙GDF+DG0RDF+DGDF·˙G
48 16 23 45 47 syl3anc φDF+DGDF·˙G
49 18 25 30 48 xrletrid φDF·˙G=DF+DG