Metamath Proof Explorer


Theorem dfac5lem5

Description: Lemma for dfac5 . (Contributed by NM, 12-Apr-2004)

Ref Expression
Hypotheses dfac5lem.1 A=u|uthu=t×t
dfac5lem.2 B=Ay
dfac5lem.3 φxzxzzxwxzwzw=yzx∃!vvzy
Assertion dfac5lem5 φfwhwfww

Proof

Step Hyp Ref Expression
1 dfac5lem.1 A=u|uthu=t×t
2 dfac5lem.2 B=Ay
3 dfac5lem.3 φxzxzzxwxzwzw=yzx∃!vvzy
4 1 2 3 dfac5lem4 φyzA∃!vvzy
5 simpr wwhwh
6 5 a1i zA∃!vvzywwhwh
7 ineq1 z=w×wzy=w×wy
8 7 eleq2d z=w×wvzyvw×wy
9 8 eubidv z=w×w∃!vvzy∃!vvw×wy
10 9 rspccv zA∃!vvzyw×wA∃!vvw×wy
11 1 dfac5lem3 w×wAwwh
12 dfac5lem1 ∃!vvw×wy∃!ggwwgy
13 10 11 12 3imtr3g zA∃!vvzywwh∃!ggwwgy
14 6 13 jcad zA∃!vvzywwhwh∃!ggwwgy
15 2 eleq2i wgBwgAy
16 elin wgAywgAwgy
17 1 dfac5lem2 wgAwhgw
18 17 anbi1i wgAwgywhgwwgy
19 anass whgwwgywhgwwgy
20 18 19 bitri wgAwgywhgwwgy
21 15 16 20 3bitri wgBwhgwwgy
22 21 eubii ∃!gwgB∃!gwhgwwgy
23 euanv ∃!gwhgwwgywh∃!ggwwgy
24 22 23 bitr2i wh∃!ggwwgy∃!gwgB
25 14 24 imbitrdi zA∃!vvzywwh∃!gwgB
26 euex ∃!gwgBgwgB
27 nfeu1 g∃!gwgB
28 nfv gBww
29 27 28 nfim g∃!gwgBBww
30 21 simprbi wgBgwwgy
31 30 simpld wgBgw
32 tz6.12 wgB∃!gwgBBw=g
33 32 eleq1d wgB∃!gwgBBwwgw
34 33 biimparc gwwgB∃!gwgBBww
35 34 exp32 gwwgB∃!gwgBBww
36 31 35 mpcom wgB∃!gwgBBww
37 29 36 exlimi gwgB∃!gwgBBww
38 26 37 mpcom ∃!gwgBBww
39 25 38 syl6 zA∃!vvzywwhBww
40 39 expcomd zA∃!vvzywhwBww
41 40 ralrimiv zA∃!vvzywhwBww
42 vex yV
43 42 inex2 AyV
44 2 43 eqeltri BV
45 fveq1 f=Bfw=Bw
46 45 eleq1d f=BfwwBww
47 46 imbi2d f=BwfwwwBww
48 47 ralbidv f=BwhwfwwwhwBww
49 44 48 spcev whwBwwfwhwfww
50 41 49 syl zA∃!vvzyfwhwfww
51 50 exlimiv yzA∃!vvzyfwhwfww
52 4 51 syl φfwhwfww