Metamath Proof Explorer


Theorem dfef2

Description: The limit of the sequence ( 1 + A / k ) ^ k as k goes to +oo is ( expA ) . This is another common definition of _e . (Contributed by Mario Carneiro, 1-Mar-2015)

Ref Expression
Hypotheses dfef2.1 φFV
dfef2.2 φA
dfef2.3 φkFk=1+Akk
Assertion dfef2 φFeA

Proof

Step Hyp Ref Expression
1 dfef2.1 φFV
2 dfef2.2 φA
3 dfef2.3 φkFk=1+Akk
4 ax-1cn 1
5 simpl AxA
6 nncn xx
7 6 adantl Axx
8 nnne0 xx0
9 8 adantl Axx0
10 5 7 9 divcld AxAx
11 addcl 1Ax1+Ax
12 4 10 11 sylancr Ax1+Ax
13 nnnn0 xx0
14 13 adantl Axx0
15 cxpexp 1+Axx01+Axx=1+Axx
16 12 14 15 syl2anc Ax1+Axx=1+Axx
17 16 mpteq2dva Ax1+Axx=x1+Axx
18 nnrp xx+
19 18 ssriv +
20 19 a1i A+
21 eqid 0ballabs1A+1=0ballabs1A+1
22 21 efrlim Ax+1+AxxeA
23 20 22 rlimres2 Ax1+AxxeA
24 17 23 eqbrtrrd Ax1+AxxeA
25 nnuz =1
26 1zzd A1
27 12 14 expcld Ax1+Axx
28 27 fmpttd Ax1+Axx:
29 25 26 28 rlimclim Ax1+AxxeAx1+AxxeA
30 24 29 mpbid Ax1+AxxeA
31 2 30 syl φx1+AxxeA
32 nnex V
33 32 mptex x1+AxxV
34 33 a1i φx1+AxxV
35 1zzd φ1
36 oveq2 x=kAx=Ak
37 36 oveq2d x=k1+Ax=1+Ak
38 id x=kx=k
39 37 38 oveq12d x=k1+Axx=1+Akk
40 eqid x1+Axx=x1+Axx
41 ovex 1+AkkV
42 39 40 41 fvmpt kx1+Axxk=1+Akk
43 42 adantl φkx1+Axxk=1+Akk
44 43 3 eqtr4d φkx1+Axxk=Fk
45 25 34 1 35 44 climeq φx1+AxxeAFeA
46 31 45 mpbid φFeA