Metamath Proof Explorer


Theorem dfiso2

Description: Alternate definition of an isomorphism of a category, according to definition 3.8 in Adamek p. 28. (Contributed by AV, 10-Apr-2020)

Ref Expression
Hypotheses dfiso2.b B=BaseC
dfiso2.h H=HomC
dfiso2.c φCCat
dfiso2.i I=IsoC
dfiso2.x φXB
dfiso2.y φYB
dfiso2.f φFXHY
dfiso2.1 1˙=IdC
dfiso2.o No typesetting found for |- .o. = ( <. X , Y >. ( comp ` C ) X ) with typecode |-
dfiso2.p ˙=YXcompCY
Assertion dfiso2 Could not format assertion : No typesetting found for |- ( ph -> ( F e. ( X I Y ) <-> E. g e. ( Y H X ) ( ( g .o. F ) = ( .1. ` X ) /\ ( F .* g ) = ( .1. ` Y ) ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 dfiso2.b B=BaseC
2 dfiso2.h H=HomC
3 dfiso2.c φCCat
4 dfiso2.i I=IsoC
5 dfiso2.x φXB
6 dfiso2.y φYB
7 dfiso2.f φFXHY
8 dfiso2.1 1˙=IdC
9 dfiso2.o Could not format .o. = ( <. X , Y >. ( comp ` C ) X ) : No typesetting found for |- .o. = ( <. X , Y >. ( comp ` C ) X ) with typecode |-
10 dfiso2.p ˙=YXcompCY
11 eqid InvC=InvC
12 1 11 3 5 6 4 isoval φXIY=domXInvCY
13 12 eleq2d φFXIYFdomXInvCY
14 eqid SectC=SectC
15 1 11 3 5 6 14 invfval φXInvCY=XSectCYYSectCX-1
16 15 dmeqd φdomXInvCY=domXSectCYYSectCX-1
17 16 eleq2d φFdomXInvCYFdomXSectCYYSectCX-1
18 eqid compC=compC
19 1 2 18 8 14 3 5 6 sectfval φXSectCY=fg|fXHYgYHXgXYcompCXf=1˙X
20 1 2 18 8 14 3 6 5 sectfval φYSectCX=gf|gYHXfXHYfYXcompCYg=1˙Y
21 20 cnveqd φYSectCX-1=gf|gYHXfXHYfYXcompCYg=1˙Y-1
22 cnvopab gf|gYHXfXHYfYXcompCYg=1˙Y-1=fg|gYHXfXHYfYXcompCYg=1˙Y
23 21 22 eqtrdi φYSectCX-1=fg|gYHXfXHYfYXcompCYg=1˙Y
24 19 23 ineq12d φXSectCYYSectCX-1=fg|fXHYgYHXgXYcompCXf=1˙Xfg|gYHXfXHYfYXcompCYg=1˙Y
25 inopab fg|fXHYgYHXgXYcompCXf=1˙Xfg|gYHXfXHYfYXcompCYg=1˙Y=fg|fXHYgYHXgXYcompCXf=1˙XgYHXfXHYfYXcompCYg=1˙Y
26 an4 fXHYgYHXgXYcompCXf=1˙XgYHXfXHYfYXcompCYg=1˙YfXHYgYHXgYHXfXHYgXYcompCXf=1˙XfYXcompCYg=1˙Y
27 an42 fXHYgYHXgYHXfXHYfXHYgYHXfXHYgYHX
28 anidm fXHYgYHXfXHYgYHXfXHYgYHX
29 27 28 bitri fXHYgYHXgYHXfXHYfXHYgYHX
30 29 anbi1i fXHYgYHXgYHXfXHYgXYcompCXf=1˙XfYXcompCYg=1˙YfXHYgYHXgXYcompCXf=1˙XfYXcompCYg=1˙Y
31 26 30 bitri fXHYgYHXgXYcompCXf=1˙XgYHXfXHYfYXcompCYg=1˙YfXHYgYHXgXYcompCXf=1˙XfYXcompCYg=1˙Y
32 31 opabbii fg|fXHYgYHXgXYcompCXf=1˙XgYHXfXHYfYXcompCYg=1˙Y=fg|fXHYgYHXgXYcompCXf=1˙XfYXcompCYg=1˙Y
33 25 32 eqtri fg|fXHYgYHXgXYcompCXf=1˙Xfg|gYHXfXHYfYXcompCYg=1˙Y=fg|fXHYgYHXgXYcompCXf=1˙XfYXcompCYg=1˙Y
34 24 33 eqtrdi φXSectCYYSectCX-1=fg|fXHYgYHXgXYcompCXf=1˙XfYXcompCYg=1˙Y
35 34 dmeqd φdomXSectCYYSectCX-1=domfg|fXHYgYHXgXYcompCXf=1˙XfYXcompCYg=1˙Y
36 dmopab domfg|fXHYgYHXgXYcompCXf=1˙XfYXcompCYg=1˙Y=f|gfXHYgYHXgXYcompCXf=1˙XfYXcompCYg=1˙Y
37 35 36 eqtrdi φdomXSectCYYSectCX-1=f|gfXHYgYHXgXYcompCXf=1˙XfYXcompCYg=1˙Y
38 37 eleq2d φFdomXSectCYYSectCX-1Ff|gfXHYgYHXgXYcompCXf=1˙XfYXcompCYg=1˙Y
39 eleq1 f=FfXHYFXHY
40 39 anbi1d f=FfXHYgYHXFXHYgYHX
41 oveq2 f=FgXYcompCXf=gXYcompCXF
42 41 eqeq1d f=FgXYcompCXf=1˙XgXYcompCXF=1˙X
43 oveq1 f=FfYXcompCYg=FYXcompCYg
44 43 eqeq1d f=FfYXcompCYg=1˙YFYXcompCYg=1˙Y
45 42 44 anbi12d f=FgXYcompCXf=1˙XfYXcompCYg=1˙YgXYcompCXF=1˙XFYXcompCYg=1˙Y
46 40 45 anbi12d f=FfXHYgYHXgXYcompCXf=1˙XfYXcompCYg=1˙YFXHYgYHXgXYcompCXF=1˙XFYXcompCYg=1˙Y
47 46 exbidv f=FgfXHYgYHXgXYcompCXf=1˙XfYXcompCYg=1˙YgFXHYgYHXgXYcompCXF=1˙XFYXcompCYg=1˙Y
48 47 elabg FXHYFf|gfXHYgYHXgXYcompCXf=1˙XfYXcompCYg=1˙YgFXHYgYHXgXYcompCXF=1˙XFYXcompCYg=1˙Y
49 7 48 syl φFf|gfXHYgYHXgXYcompCXf=1˙XfYXcompCYg=1˙YgFXHYgYHXgXYcompCXF=1˙XFYXcompCYg=1˙Y
50 7 biantrurd φgYHXFXHYgYHX
51 50 bicomd φFXHYgYHXgYHX
52 9 a1i Could not format ( ph -> .o. = ( <. X , Y >. ( comp ` C ) X ) ) : No typesetting found for |- ( ph -> .o. = ( <. X , Y >. ( comp ` C ) X ) ) with typecode |-
53 52 eqcomd Could not format ( ph -> ( <. X , Y >. ( comp ` C ) X ) = .o. ) : No typesetting found for |- ( ph -> ( <. X , Y >. ( comp ` C ) X ) = .o. ) with typecode |-
54 53 oveqd Could not format ( ph -> ( g ( <. X , Y >. ( comp ` C ) X ) F ) = ( g .o. F ) ) : No typesetting found for |- ( ph -> ( g ( <. X , Y >. ( comp ` C ) X ) F ) = ( g .o. F ) ) with typecode |-
55 54 eqeq1d Could not format ( ph -> ( ( g ( <. X , Y >. ( comp ` C ) X ) F ) = ( .1. ` X ) <-> ( g .o. F ) = ( .1. ` X ) ) ) : No typesetting found for |- ( ph -> ( ( g ( <. X , Y >. ( comp ` C ) X ) F ) = ( .1. ` X ) <-> ( g .o. F ) = ( .1. ` X ) ) ) with typecode |-
56 10 a1i φ˙=YXcompCY
57 56 eqcomd φYXcompCY=˙
58 57 oveqd φFYXcompCYg=F˙g
59 58 eqeq1d φFYXcompCYg=1˙YF˙g=1˙Y
60 55 59 anbi12d Could not format ( ph -> ( ( ( g ( <. X , Y >. ( comp ` C ) X ) F ) = ( .1. ` X ) /\ ( F ( <. Y , X >. ( comp ` C ) Y ) g ) = ( .1. ` Y ) ) <-> ( ( g .o. F ) = ( .1. ` X ) /\ ( F .* g ) = ( .1. ` Y ) ) ) ) : No typesetting found for |- ( ph -> ( ( ( g ( <. X , Y >. ( comp ` C ) X ) F ) = ( .1. ` X ) /\ ( F ( <. Y , X >. ( comp ` C ) Y ) g ) = ( .1. ` Y ) ) <-> ( ( g .o. F ) = ( .1. ` X ) /\ ( F .* g ) = ( .1. ` Y ) ) ) ) with typecode |-
61 51 60 anbi12d Could not format ( ph -> ( ( ( F e. ( X H Y ) /\ g e. ( Y H X ) ) /\ ( ( g ( <. X , Y >. ( comp ` C ) X ) F ) = ( .1. ` X ) /\ ( F ( <. Y , X >. ( comp ` C ) Y ) g ) = ( .1. ` Y ) ) ) <-> ( g e. ( Y H X ) /\ ( ( g .o. F ) = ( .1. ` X ) /\ ( F .* g ) = ( .1. ` Y ) ) ) ) ) : No typesetting found for |- ( ph -> ( ( ( F e. ( X H Y ) /\ g e. ( Y H X ) ) /\ ( ( g ( <. X , Y >. ( comp ` C ) X ) F ) = ( .1. ` X ) /\ ( F ( <. Y , X >. ( comp ` C ) Y ) g ) = ( .1. ` Y ) ) ) <-> ( g e. ( Y H X ) /\ ( ( g .o. F ) = ( .1. ` X ) /\ ( F .* g ) = ( .1. ` Y ) ) ) ) ) with typecode |-
62 61 exbidv Could not format ( ph -> ( E. g ( ( F e. ( X H Y ) /\ g e. ( Y H X ) ) /\ ( ( g ( <. X , Y >. ( comp ` C ) X ) F ) = ( .1. ` X ) /\ ( F ( <. Y , X >. ( comp ` C ) Y ) g ) = ( .1. ` Y ) ) ) <-> E. g ( g e. ( Y H X ) /\ ( ( g .o. F ) = ( .1. ` X ) /\ ( F .* g ) = ( .1. ` Y ) ) ) ) ) : No typesetting found for |- ( ph -> ( E. g ( ( F e. ( X H Y ) /\ g e. ( Y H X ) ) /\ ( ( g ( <. X , Y >. ( comp ` C ) X ) F ) = ( .1. ` X ) /\ ( F ( <. Y , X >. ( comp ` C ) Y ) g ) = ( .1. ` Y ) ) ) <-> E. g ( g e. ( Y H X ) /\ ( ( g .o. F ) = ( .1. ` X ) /\ ( F .* g ) = ( .1. ` Y ) ) ) ) ) with typecode |-
63 df-rex Could not format ( E. g e. ( Y H X ) ( ( g .o. F ) = ( .1. ` X ) /\ ( F .* g ) = ( .1. ` Y ) ) <-> E. g ( g e. ( Y H X ) /\ ( ( g .o. F ) = ( .1. ` X ) /\ ( F .* g ) = ( .1. ` Y ) ) ) ) : No typesetting found for |- ( E. g e. ( Y H X ) ( ( g .o. F ) = ( .1. ` X ) /\ ( F .* g ) = ( .1. ` Y ) ) <-> E. g ( g e. ( Y H X ) /\ ( ( g .o. F ) = ( .1. ` X ) /\ ( F .* g ) = ( .1. ` Y ) ) ) ) with typecode |-
64 62 63 bitr4di Could not format ( ph -> ( E. g ( ( F e. ( X H Y ) /\ g e. ( Y H X ) ) /\ ( ( g ( <. X , Y >. ( comp ` C ) X ) F ) = ( .1. ` X ) /\ ( F ( <. Y , X >. ( comp ` C ) Y ) g ) = ( .1. ` Y ) ) ) <-> E. g e. ( Y H X ) ( ( g .o. F ) = ( .1. ` X ) /\ ( F .* g ) = ( .1. ` Y ) ) ) ) : No typesetting found for |- ( ph -> ( E. g ( ( F e. ( X H Y ) /\ g e. ( Y H X ) ) /\ ( ( g ( <. X , Y >. ( comp ` C ) X ) F ) = ( .1. ` X ) /\ ( F ( <. Y , X >. ( comp ` C ) Y ) g ) = ( .1. ` Y ) ) ) <-> E. g e. ( Y H X ) ( ( g .o. F ) = ( .1. ` X ) /\ ( F .* g ) = ( .1. ` Y ) ) ) ) with typecode |-
65 38 49 64 3bitrd Could not format ( ph -> ( F e. dom ( ( X ( Sect ` C ) Y ) i^i `' ( Y ( Sect ` C ) X ) ) <-> E. g e. ( Y H X ) ( ( g .o. F ) = ( .1. ` X ) /\ ( F .* g ) = ( .1. ` Y ) ) ) ) : No typesetting found for |- ( ph -> ( F e. dom ( ( X ( Sect ` C ) Y ) i^i `' ( Y ( Sect ` C ) X ) ) <-> E. g e. ( Y H X ) ( ( g .o. F ) = ( .1. ` X ) /\ ( F .* g ) = ( .1. ` Y ) ) ) ) with typecode |-
66 13 17 65 3bitrd Could not format ( ph -> ( F e. ( X I Y ) <-> E. g e. ( Y H X ) ( ( g .o. F ) = ( .1. ` X ) /\ ( F .* g ) = ( .1. ` Y ) ) ) ) : No typesetting found for |- ( ph -> ( F e. ( X I Y ) <-> E. g e. ( Y H X ) ( ( g .o. F ) = ( .1. ` X ) /\ ( F .* g ) = ( .1. ` Y ) ) ) ) with typecode |-