Database
REAL AND COMPLEX NUMBERS
Order sets
Real number intervals
difreicc
Next ⟩
iccsplit
Metamath Proof Explorer
Ascii
Unicode
Theorem
difreicc
Description:
The class difference of
RR
and a closed interval.
(Contributed by
FL
, 18-Jun-2007)
Ref
Expression
Assertion
difreicc
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
ℝ
∖
A
B
=
−∞
A
∪
B
+∞
Proof
Step
Hyp
Ref
Expression
1
eldif
⊢
x
∈
ℝ
∖
A
B
↔
x
∈
ℝ
∧
¬
x
∈
A
B
2
rexr
⊢
A
∈
ℝ
→
A
∈
ℝ
*
3
rexr
⊢
B
∈
ℝ
→
B
∈
ℝ
*
4
elicc1
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
x
∈
A
B
↔
x
∈
ℝ
*
∧
A
≤
x
∧
x
≤
B
5
2
3
4
syl2an
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
x
∈
A
B
↔
x
∈
ℝ
*
∧
A
≤
x
∧
x
≤
B
6
5
adantr
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
x
∈
ℝ
→
x
∈
A
B
↔
x
∈
ℝ
*
∧
A
≤
x
∧
x
≤
B
7
6
notbid
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
x
∈
ℝ
→
¬
x
∈
A
B
↔
¬
x
∈
ℝ
*
∧
A
≤
x
∧
x
≤
B
8
3anass
⊢
x
∈
ℝ
*
∧
A
≤
x
∧
x
≤
B
↔
x
∈
ℝ
*
∧
A
≤
x
∧
x
≤
B
9
8
notbii
⊢
¬
x
∈
ℝ
*
∧
A
≤
x
∧
x
≤
B
↔
¬
x
∈
ℝ
*
∧
A
≤
x
∧
x
≤
B
10
ianor
⊢
¬
x
∈
ℝ
*
∧
A
≤
x
∧
x
≤
B
↔
¬
x
∈
ℝ
*
∨
¬
A
≤
x
∧
x
≤
B
11
rexr
⊢
x
∈
ℝ
→
x
∈
ℝ
*
12
11
pm2.24d
⊢
x
∈
ℝ
→
¬
x
∈
ℝ
*
→
x
∈
−∞
A
∨
x
∈
B
+∞
13
12
adantl
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
x
∈
ℝ
→
¬
x
∈
ℝ
*
→
x
∈
−∞
A
∨
x
∈
B
+∞
14
ianor
⊢
¬
A
≤
x
∧
x
≤
B
↔
¬
A
≤
x
∨
¬
x
≤
B
15
11
ad2antlr
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
x
∈
ℝ
∧
¬
A
≤
x
→
x
∈
ℝ
*
16
mnflt
⊢
x
∈
ℝ
→
−∞
<
x
17
16
ad2antlr
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
x
∈
ℝ
∧
¬
A
≤
x
→
−∞
<
x
18
simpr
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
x
∈
ℝ
→
x
∈
ℝ
19
simpll
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
x
∈
ℝ
→
A
∈
ℝ
20
ltnle
⊢
x
∈
ℝ
∧
A
∈
ℝ
→
x
<
A
↔
¬
A
≤
x
21
20
bicomd
⊢
x
∈
ℝ
∧
A
∈
ℝ
→
¬
A
≤
x
↔
x
<
A
22
18
19
21
syl2anc
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
x
∈
ℝ
→
¬
A
≤
x
↔
x
<
A
23
22
biimpa
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
x
∈
ℝ
∧
¬
A
≤
x
→
x
<
A
24
mnfxr
⊢
−∞
∈
ℝ
*
25
2
ad3antrrr
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
x
∈
ℝ
∧
¬
A
≤
x
→
A
∈
ℝ
*
26
elioo1
⊢
−∞
∈
ℝ
*
∧
A
∈
ℝ
*
→
x
∈
−∞
A
↔
x
∈
ℝ
*
∧
−∞
<
x
∧
x
<
A
27
24
25
26
sylancr
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
x
∈
ℝ
∧
¬
A
≤
x
→
x
∈
−∞
A
↔
x
∈
ℝ
*
∧
−∞
<
x
∧
x
<
A
28
15
17
23
27
mpbir3and
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
x
∈
ℝ
∧
¬
A
≤
x
→
x
∈
−∞
A
29
28
ex
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
x
∈
ℝ
→
¬
A
≤
x
→
x
∈
−∞
A
30
ltnle
⊢
B
∈
ℝ
∧
x
∈
ℝ
→
B
<
x
↔
¬
x
≤
B
31
30
adantll
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
x
∈
ℝ
→
B
<
x
↔
¬
x
≤
B
32
11
ad2antlr
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
x
∈
ℝ
∧
B
<
x
→
x
∈
ℝ
*
33
simpr
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
x
∈
ℝ
∧
B
<
x
→
B
<
x
34
ltpnf
⊢
x
∈
ℝ
→
x
<
+∞
35
34
ad2antlr
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
x
∈
ℝ
∧
B
<
x
→
x
<
+∞
36
3
ad3antlr
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
x
∈
ℝ
∧
B
<
x
→
B
∈
ℝ
*
37
pnfxr
⊢
+∞
∈
ℝ
*
38
elioo1
⊢
B
∈
ℝ
*
∧
+∞
∈
ℝ
*
→
x
∈
B
+∞
↔
x
∈
ℝ
*
∧
B
<
x
∧
x
<
+∞
39
36
37
38
sylancl
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
x
∈
ℝ
∧
B
<
x
→
x
∈
B
+∞
↔
x
∈
ℝ
*
∧
B
<
x
∧
x
<
+∞
40
32
33
35
39
mpbir3and
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
x
∈
ℝ
∧
B
<
x
→
x
∈
B
+∞
41
40
ex
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
x
∈
ℝ
→
B
<
x
→
x
∈
B
+∞
42
31
41
sylbird
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
x
∈
ℝ
→
¬
x
≤
B
→
x
∈
B
+∞
43
29
42
orim12d
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
x
∈
ℝ
→
¬
A
≤
x
∨
¬
x
≤
B
→
x
∈
−∞
A
∨
x
∈
B
+∞
44
14
43
biimtrid
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
x
∈
ℝ
→
¬
A
≤
x
∧
x
≤
B
→
x
∈
−∞
A
∨
x
∈
B
+∞
45
13
44
jaod
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
x
∈
ℝ
→
¬
x
∈
ℝ
*
∨
¬
A
≤
x
∧
x
≤
B
→
x
∈
−∞
A
∨
x
∈
B
+∞
46
10
45
biimtrid
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
x
∈
ℝ
→
¬
x
∈
ℝ
*
∧
A
≤
x
∧
x
≤
B
→
x
∈
−∞
A
∨
x
∈
B
+∞
47
9
46
biimtrid
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
x
∈
ℝ
→
¬
x
∈
ℝ
*
∧
A
≤
x
∧
x
≤
B
→
x
∈
−∞
A
∨
x
∈
B
+∞
48
7
47
sylbid
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
x
∈
ℝ
→
¬
x
∈
A
B
→
x
∈
−∞
A
∨
x
∈
B
+∞
49
48
expimpd
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
x
∈
ℝ
∧
¬
x
∈
A
B
→
x
∈
−∞
A
∨
x
∈
B
+∞
50
elun
⊢
x
∈
−∞
A
∪
B
+∞
↔
x
∈
−∞
A
∨
x
∈
B
+∞
51
49
50
syl6ibr
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
x
∈
ℝ
∧
¬
x
∈
A
B
→
x
∈
−∞
A
∪
B
+∞
52
ioossre
⊢
−∞
A
⊆
ℝ
53
ioossre
⊢
B
+∞
⊆
ℝ
54
52
53
unssi
⊢
−∞
A
∪
B
+∞
⊆
ℝ
55
54
sseli
⊢
x
∈
−∞
A
∪
B
+∞
→
x
∈
ℝ
56
55
adantl
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
x
∈
−∞
A
∪
B
+∞
→
x
∈
ℝ
57
elioo2
⊢
−∞
∈
ℝ
*
∧
A
∈
ℝ
*
→
x
∈
−∞
A
↔
x
∈
ℝ
∧
−∞
<
x
∧
x
<
A
58
24
2
57
sylancr
⊢
A
∈
ℝ
→
x
∈
−∞
A
↔
x
∈
ℝ
∧
−∞
<
x
∧
x
<
A
59
58
adantr
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
x
∈
−∞
A
↔
x
∈
ℝ
∧
−∞
<
x
∧
x
<
A
60
20
biimpd
⊢
x
∈
ℝ
∧
A
∈
ℝ
→
x
<
A
→
¬
A
≤
x
61
60
ex
⊢
x
∈
ℝ
→
A
∈
ℝ
→
x
<
A
→
¬
A
≤
x
62
61
a1i
⊢
−∞
<
x
→
x
∈
ℝ
→
A
∈
ℝ
→
x
<
A
→
¬
A
≤
x
63
62
com13
⊢
A
∈
ℝ
→
x
∈
ℝ
→
−∞
<
x
→
x
<
A
→
¬
A
≤
x
64
63
adantr
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
x
∈
ℝ
→
−∞
<
x
→
x
<
A
→
¬
A
≤
x
65
64
3impd
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
x
∈
ℝ
∧
−∞
<
x
∧
x
<
A
→
¬
A
≤
x
66
59
65
sylbid
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
x
∈
−∞
A
→
¬
A
≤
x
67
3
adantl
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
B
∈
ℝ
*
68
67
37
38
sylancl
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
x
∈
B
+∞
↔
x
∈
ℝ
*
∧
B
<
x
∧
x
<
+∞
69
xrltnle
⊢
B
∈
ℝ
*
∧
x
∈
ℝ
*
→
B
<
x
↔
¬
x
≤
B
70
69
biimpd
⊢
B
∈
ℝ
*
∧
x
∈
ℝ
*
→
B
<
x
→
¬
x
≤
B
71
70
ex
⊢
B
∈
ℝ
*
→
x
∈
ℝ
*
→
B
<
x
→
¬
x
≤
B
72
71
a1ddd
⊢
B
∈
ℝ
*
→
x
∈
ℝ
*
→
B
<
x
→
x
<
+∞
→
¬
x
≤
B
73
3
72
syl
⊢
B
∈
ℝ
→
x
∈
ℝ
*
→
B
<
x
→
x
<
+∞
→
¬
x
≤
B
74
73
adantl
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
x
∈
ℝ
*
→
B
<
x
→
x
<
+∞
→
¬
x
≤
B
75
74
3impd
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
x
∈
ℝ
*
∧
B
<
x
∧
x
<
+∞
→
¬
x
≤
B
76
68
75
sylbid
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
x
∈
B
+∞
→
¬
x
≤
B
77
66
76
orim12d
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
x
∈
−∞
A
∨
x
∈
B
+∞
→
¬
A
≤
x
∨
¬
x
≤
B
78
50
77
biimtrid
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
x
∈
−∞
A
∪
B
+∞
→
¬
A
≤
x
∨
¬
x
≤
B
79
78
imp
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
x
∈
−∞
A
∪
B
+∞
→
¬
A
≤
x
∨
¬
x
≤
B
80
79
14
sylibr
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
x
∈
−∞
A
∪
B
+∞
→
¬
A
≤
x
∧
x
≤
B
81
80
intnand
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
x
∈
−∞
A
∪
B
+∞
→
¬
x
∈
ℝ
*
∧
A
≤
x
∧
x
≤
B
82
81
8
sylnibr
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
x
∈
−∞
A
∪
B
+∞
→
¬
x
∈
ℝ
*
∧
A
≤
x
∧
x
≤
B
83
2
3
anim12i
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
∈
ℝ
*
∧
B
∈
ℝ
*
84
83
adantr
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
x
∈
−∞
A
∪
B
+∞
→
A
∈
ℝ
*
∧
B
∈
ℝ
*
85
4
notbid
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
¬
x
∈
A
B
↔
¬
x
∈
ℝ
*
∧
A
≤
x
∧
x
≤
B
86
84
85
syl
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
x
∈
−∞
A
∪
B
+∞
→
¬
x
∈
A
B
↔
¬
x
∈
ℝ
*
∧
A
≤
x
∧
x
≤
B
87
82
86
mpbird
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
x
∈
−∞
A
∪
B
+∞
→
¬
x
∈
A
B
88
56
87
jca
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
x
∈
−∞
A
∪
B
+∞
→
x
∈
ℝ
∧
¬
x
∈
A
B
89
88
ex
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
x
∈
−∞
A
∪
B
+∞
→
x
∈
ℝ
∧
¬
x
∈
A
B
90
51
89
impbid
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
x
∈
ℝ
∧
¬
x
∈
A
B
↔
x
∈
−∞
A
∪
B
+∞
91
1
90
bitrid
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
x
∈
ℝ
∖
A
B
↔
x
∈
−∞
A
∪
B
+∞
92
91
eqrdv
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
ℝ
∖
A
B
=
−∞
A
∪
B
+∞