Metamath Proof Explorer


Theorem difreicc

Description: The class difference of RR and a closed interval. (Contributed by FL, 18-Jun-2007)

Ref Expression
Assertion difreicc ABAB=−∞AB+∞

Proof

Step Hyp Ref Expression
1 eldif xABx¬xAB
2 rexr AA*
3 rexr BB*
4 elicc1 A*B*xABx*AxxB
5 2 3 4 syl2an ABxABx*AxxB
6 5 adantr ABxxABx*AxxB
7 6 notbid ABx¬xAB¬x*AxxB
8 3anass x*AxxBx*AxxB
9 8 notbii ¬x*AxxB¬x*AxxB
10 ianor ¬x*AxxB¬x*¬AxxB
11 rexr xx*
12 11 pm2.24d x¬x*x−∞AxB+∞
13 12 adantl ABx¬x*x−∞AxB+∞
14 ianor ¬AxxB¬Ax¬xB
15 11 ad2antlr ABx¬Axx*
16 mnflt x−∞<x
17 16 ad2antlr ABx¬Ax−∞<x
18 simpr ABxx
19 simpll ABxA
20 ltnle xAx<A¬Ax
21 20 bicomd xA¬Axx<A
22 18 19 21 syl2anc ABx¬Axx<A
23 22 biimpa ABx¬Axx<A
24 mnfxr −∞*
25 2 ad3antrrr ABx¬AxA*
26 elioo1 −∞*A*x−∞Ax*−∞<xx<A
27 24 25 26 sylancr ABx¬Axx−∞Ax*−∞<xx<A
28 15 17 23 27 mpbir3and ABx¬Axx−∞A
29 28 ex ABx¬Axx−∞A
30 ltnle BxB<x¬xB
31 30 adantll ABxB<x¬xB
32 11 ad2antlr ABxB<xx*
33 simpr ABxB<xB<x
34 ltpnf xx<+∞
35 34 ad2antlr ABxB<xx<+∞
36 3 ad3antlr ABxB<xB*
37 pnfxr +∞*
38 elioo1 B*+∞*xB+∞x*B<xx<+∞
39 36 37 38 sylancl ABxB<xxB+∞x*B<xx<+∞
40 32 33 35 39 mpbir3and ABxB<xxB+∞
41 40 ex ABxB<xxB+∞
42 31 41 sylbird ABx¬xBxB+∞
43 29 42 orim12d ABx¬Ax¬xBx−∞AxB+∞
44 14 43 biimtrid ABx¬AxxBx−∞AxB+∞
45 13 44 jaod ABx¬x*¬AxxBx−∞AxB+∞
46 10 45 biimtrid ABx¬x*AxxBx−∞AxB+∞
47 9 46 biimtrid ABx¬x*AxxBx−∞AxB+∞
48 7 47 sylbid ABx¬xABx−∞AxB+∞
49 48 expimpd ABx¬xABx−∞AxB+∞
50 elun x−∞AB+∞x−∞AxB+∞
51 49 50 syl6ibr ABx¬xABx−∞AB+∞
52 ioossre −∞A
53 ioossre B+∞
54 52 53 unssi −∞AB+∞
55 54 sseli x−∞AB+∞x
56 55 adantl ABx−∞AB+∞x
57 elioo2 −∞*A*x−∞Ax−∞<xx<A
58 24 2 57 sylancr Ax−∞Ax−∞<xx<A
59 58 adantr ABx−∞Ax−∞<xx<A
60 20 biimpd xAx<A¬Ax
61 60 ex xAx<A¬Ax
62 61 a1i −∞<xxAx<A¬Ax
63 62 com13 Ax−∞<xx<A¬Ax
64 63 adantr ABx−∞<xx<A¬Ax
65 64 3impd ABx−∞<xx<A¬Ax
66 59 65 sylbid ABx−∞A¬Ax
67 3 adantl ABB*
68 67 37 38 sylancl ABxB+∞x*B<xx<+∞
69 xrltnle B*x*B<x¬xB
70 69 biimpd B*x*B<x¬xB
71 70 ex B*x*B<x¬xB
72 71 a1ddd B*x*B<xx<+∞¬xB
73 3 72 syl Bx*B<xx<+∞¬xB
74 73 adantl ABx*B<xx<+∞¬xB
75 74 3impd ABx*B<xx<+∞¬xB
76 68 75 sylbid ABxB+∞¬xB
77 66 76 orim12d ABx−∞AxB+∞¬Ax¬xB
78 50 77 biimtrid ABx−∞AB+∞¬Ax¬xB
79 78 imp ABx−∞AB+∞¬Ax¬xB
80 79 14 sylibr ABx−∞AB+∞¬AxxB
81 80 intnand ABx−∞AB+∞¬x*AxxB
82 81 8 sylnibr ABx−∞AB+∞¬x*AxxB
83 2 3 anim12i ABA*B*
84 83 adantr ABx−∞AB+∞A*B*
85 4 notbid A*B*¬xAB¬x*AxxB
86 84 85 syl ABx−∞AB+∞¬xAB¬x*AxxB
87 82 86 mpbird ABx−∞AB+∞¬xAB
88 56 87 jca ABx−∞AB+∞x¬xAB
89 88 ex ABx−∞AB+∞x¬xAB
90 51 89 impbid ABx¬xABx−∞AB+∞
91 1 90 bitrid ABxABx−∞AB+∞
92 91 eqrdv ABAB=−∞AB+∞