Description: Projecting a Diophantine set by removing a coordinate results in a Diophantine set. (Contributed by Stefan O'Rear, 10-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | diophrex | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 | |
|
2 | 1 | rexbidv | |
3 | reseq1 | |
|
4 | 3 | eqeq2d | |
5 | 4 | cbvrexvw | |
6 | 2 5 | bitrdi | |
7 | 6 | cbvabv | |
8 | rexeq | |
|
9 | 8 | abbidv | |
10 | 9 | adantl | |
11 | eqeq1 | |
|
12 | 11 | anbi1d | |
13 | 12 | rexbidv | |
14 | 13 | rexab | |
15 | r19.41v | |
|
16 | 15 | exbii | |
17 | rexcom4 | |
|
18 | anass | |
|
19 | 18 | exbii | |
20 | vex | |
|
21 | 20 | resex | |
22 | reseq1 | |
|
23 | 22 | eqeq2d | |
24 | 23 | anbi2d | |
25 | 21 24 | ceqsexv | |
26 | 19 25 | bitri | |
27 | ancom | |
|
28 | simpl2 | |
|
29 | fzss2 | |
|
30 | resabs1 | |
|
31 | 28 29 30 | 3syl | |
32 | 31 | eqeq2d | |
33 | 32 | anbi1d | |
34 | 27 33 | bitrid | |
35 | 26 34 | bitrid | |
36 | 35 | rexbidv | |
37 | 17 36 | bitr3id | |
38 | 16 37 | bitr3id | |
39 | 14 38 | bitrid | |
40 | 39 | abbidv | |
41 | eldioph3 | |
|
42 | 41 | 3ad2antl1 | |
43 | 40 42 | eqeltrd | |
44 | 43 | adantr | |
45 | 10 44 | eqeltrd | |
46 | eldioph3b | |
|
47 | 46 | simprbi | |
48 | 47 | 3ad2ant3 | |
49 | 45 48 | r19.29a | |
50 | 7 49 | eqeltrrid | |