Metamath Proof Explorer


Theorem diophrex

Description: Projecting a Diophantine set by removing a coordinate results in a Diophantine set. (Contributed by Stefan O'Rear, 10-Oct-2014)

Ref Expression
Assertion diophrex N0MNSDiophMt|uSt=u1NDiophN

Proof

Step Hyp Ref Expression
1 eqeq1 a=ta=b1Nt=b1N
2 1 rexbidv a=tbSa=b1NbSt=b1N
3 reseq1 b=ub1N=u1N
4 3 eqeq2d b=ut=b1Nt=u1N
5 4 cbvrexvw bSt=b1NuSt=u1N
6 2 5 bitrdi a=tbSa=b1NuSt=u1N
7 6 cbvabv a|bSa=b1N=t|uSt=u1N
8 rexeq S=d|e0d=e1Mce=0bSa=b1Nbd|e0d=e1Mce=0a=b1N
9 8 abbidv S=d|e0d=e1Mce=0a|bSa=b1N=a|bd|e0d=e1Mce=0a=b1N
10 9 adantl N0MNSDiophMcmzPolyS=d|e0d=e1Mce=0a|bSa=b1N=a|bd|e0d=e1Mce=0a=b1N
11 eqeq1 d=bd=e1Mb=e1M
12 11 anbi1d d=bd=e1Mce=0b=e1Mce=0
13 12 rexbidv d=be0d=e1Mce=0e0b=e1Mce=0
14 13 rexab bd|e0d=e1Mce=0a=b1Nbe0b=e1Mce=0a=b1N
15 r19.41v e0b=e1Mce=0a=b1Ne0b=e1Mce=0a=b1N
16 15 exbii be0b=e1Mce=0a=b1Nbe0b=e1Mce=0a=b1N
17 rexcom4 e0bb=e1Mce=0a=b1Nbe0b=e1Mce=0a=b1N
18 anass b=e1Mce=0a=b1Nb=e1Mce=0a=b1N
19 18 exbii bb=e1Mce=0a=b1Nbb=e1Mce=0a=b1N
20 vex eV
21 20 resex e1MV
22 reseq1 b=e1Mb1N=e1M1N
23 22 eqeq2d b=e1Ma=b1Na=e1M1N
24 23 anbi2d b=e1Mce=0a=b1Nce=0a=e1M1N
25 21 24 ceqsexv bb=e1Mce=0a=b1Nce=0a=e1M1N
26 19 25 bitri bb=e1Mce=0a=b1Nce=0a=e1M1N
27 ancom ce=0a=e1M1Na=e1M1Nce=0
28 simpl2 N0MNSDiophMcmzPolyMN
29 fzss2 MN1N1M
30 resabs1 1N1Me1M1N=e1N
31 28 29 30 3syl N0MNSDiophMcmzPolye1M1N=e1N
32 31 eqeq2d N0MNSDiophMcmzPolya=e1M1Na=e1N
33 32 anbi1d N0MNSDiophMcmzPolya=e1M1Nce=0a=e1Nce=0
34 27 33 bitrid N0MNSDiophMcmzPolyce=0a=e1M1Na=e1Nce=0
35 26 34 bitrid N0MNSDiophMcmzPolybb=e1Mce=0a=b1Na=e1Nce=0
36 35 rexbidv N0MNSDiophMcmzPolye0bb=e1Mce=0a=b1Ne0a=e1Nce=0
37 17 36 bitr3id N0MNSDiophMcmzPolybe0b=e1Mce=0a=b1Ne0a=e1Nce=0
38 16 37 bitr3id N0MNSDiophMcmzPolybe0b=e1Mce=0a=b1Ne0a=e1Nce=0
39 14 38 bitrid N0MNSDiophMcmzPolybd|e0d=e1Mce=0a=b1Ne0a=e1Nce=0
40 39 abbidv N0MNSDiophMcmzPolya|bd|e0d=e1Mce=0a=b1N=a|e0a=e1Nce=0
41 eldioph3 N0cmzPolya|e0a=e1Nce=0DiophN
42 41 3ad2antl1 N0MNSDiophMcmzPolya|e0a=e1Nce=0DiophN
43 40 42 eqeltrd N0MNSDiophMcmzPolya|bd|e0d=e1Mce=0a=b1NDiophN
44 43 adantr N0MNSDiophMcmzPolyS=d|e0d=e1Mce=0a|bd|e0d=e1Mce=0a=b1NDiophN
45 10 44 eqeltrd N0MNSDiophMcmzPolyS=d|e0d=e1Mce=0a|bSa=b1NDiophN
46 eldioph3b SDiophMM0cmzPolyS=d|e0d=e1Mce=0
47 46 simprbi SDiophMcmzPolyS=d|e0d=e1Mce=0
48 47 3ad2ant3 N0MNSDiophMcmzPolyS=d|e0d=e1Mce=0
49 45 48 r19.29a N0MNSDiophMa|bSa=b1NDiophN
50 7 49 eqeltrrid N0MNSDiophMt|uSt=u1NDiophN