Description: For any two elements of a directed set, there exists a third element greater than or equal to both. Note that this does not say that the two elements have aleast upper bound. (Contributed by Jeff Hankins, 25-Nov-2009) (Revised by Mario Carneiro, 22-Nov-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | dirge.1 | |
|
Assertion | dirge | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dirge.1 | |
|
2 | dirdm | |
|
3 | 1 2 | eqtrid | |
4 | 3 | eleq2d | |
5 | 3 | eleq2d | |
6 | 4 5 | anbi12d | |
7 | eqid | |
|
8 | 7 | isdir | |
9 | 8 | ibi | |
10 | 9 | simprrd | |
11 | codir | |
|
12 | 10 11 | sylib | |
13 | breq1 | |
|
14 | 13 | anbi1d | |
15 | 14 | exbidv | |
16 | breq1 | |
|
17 | 16 | anbi2d | |
18 | 17 | exbidv | |
19 | 15 18 | rspc2v | |
20 | 12 19 | syl5com | |
21 | 6 20 | sylbid | |
22 | reldir | |
|
23 | relelrn | |
|
24 | 22 23 | sylan | |
25 | 24 | ex | |
26 | ssun2 | |
|
27 | dmrnssfld | |
|
28 | 26 27 | sstri | |
29 | 28 3 | sseqtrrid | |
30 | 29 | sseld | |
31 | 25 30 | syld | |
32 | 31 | adantrd | |
33 | 32 | ancrd | |
34 | 33 | eximdv | |
35 | df-rex | |
|
36 | 34 35 | imbitrrdi | |
37 | 21 36 | syld | |
38 | 37 | 3impib | |