Metamath Proof Explorer


Theorem dirge

Description: For any two elements of a directed set, there exists a third element greater than or equal to both. Note that this does not say that the two elements have aleast upper bound. (Contributed by Jeff Hankins, 25-Nov-2009) (Revised by Mario Carneiro, 22-Nov-2013)

Ref Expression
Hypothesis dirge.1 X=domR
Assertion dirge RDirRelAXBXxXARxBRx

Proof

Step Hyp Ref Expression
1 dirge.1 X=domR
2 dirdm RDirReldomR=R
3 1 2 eqtrid RDirRelX=R
4 3 eleq2d RDirRelAXAR
5 3 eleq2d RDirRelBXBR
6 4 5 anbi12d RDirRelAXBXARBR
7 eqid R=R
8 7 isdir RDirRelRDirRelRelRIRRRRRR×RR-1R
9 8 ibi RDirRelRelRIRRRRRR×RR-1R
10 9 simprrd RDirRelR×RR-1R
11 codir R×RR-1RyRzRxyRxzRx
12 10 11 sylib RDirRelyRzRxyRxzRx
13 breq1 y=AyRxARx
14 13 anbi1d y=AyRxzRxARxzRx
15 14 exbidv y=AxyRxzRxxARxzRx
16 breq1 z=BzRxBRx
17 16 anbi2d z=BARxzRxARxBRx
18 17 exbidv z=BxARxzRxxARxBRx
19 15 18 rspc2v ARBRyRzRxyRxzRxxARxBRx
20 12 19 syl5com RDirRelARBRxARxBRx
21 6 20 sylbid RDirRelAXBXxARxBRx
22 reldir RDirRelRelR
23 relelrn RelRARxxranR
24 22 23 sylan RDirRelARxxranR
25 24 ex RDirRelARxxranR
26 ssun2 ranRdomRranR
27 dmrnssfld domRranRR
28 26 27 sstri ranRR
29 28 3 sseqtrrid RDirRelranRX
30 29 sseld RDirRelxranRxX
31 25 30 syld RDirRelARxxX
32 31 adantrd RDirRelARxBRxxX
33 32 ancrd RDirRelARxBRxxXARxBRx
34 33 eximdv RDirRelxARxBRxxxXARxBRx
35 df-rex xXARxBRxxxXARxBRx
36 34 35 imbitrrdi RDirRelxARxBRxxXARxBRx
37 21 36 syld RDirRelAXBXxXARxBRx
38 37 3impib RDirRelAXBXxXARxBRx