Metamath Proof Explorer


Theorem dnnumch3

Description: Define an injection from a set into the ordinals using a choice function. (Contributed by Stefan O'Rear, 18-Jan-2015)

Ref Expression
Hypotheses dnnumch.f F = recs z V G A ran z
dnnumch.a φ A V
dnnumch.g φ y 𝒫 A y G y y
Assertion dnnumch3 φ x A F -1 x : A 1-1 On

Proof

Step Hyp Ref Expression
1 dnnumch.f F = recs z V G A ran z
2 dnnumch.a φ A V
3 dnnumch.g φ y 𝒫 A y G y y
4 cnvimass F -1 x dom F
5 1 tfr1 F Fn On
6 fndm F Fn On dom F = On
7 5 6 ax-mp dom F = On
8 4 7 sseqtri F -1 x On
9 1 2 3 dnnumch2 φ A ran F
10 9 sselda φ x A x ran F
11 inisegn0 x ran F F -1 x
12 10 11 sylib φ x A F -1 x
13 oninton F -1 x On F -1 x F -1 x On
14 8 12 13 sylancr φ x A F -1 x On
15 14 fmpttd φ x A F -1 x : A On
16 1 2 3 dnnumch3lem φ v A x A F -1 x v = F -1 v
17 16 adantrr φ v A w A x A F -1 x v = F -1 v
18 1 2 3 dnnumch3lem φ w A x A F -1 x w = F -1 w
19 18 adantrl φ v A w A x A F -1 x w = F -1 w
20 17 19 eqeq12d φ v A w A x A F -1 x v = x A F -1 x w F -1 v = F -1 w
21 fveq2 F -1 v = F -1 w F F -1 v = F F -1 w
22 21 adantl φ v A w A F -1 v = F -1 w F F -1 v = F F -1 w
23 cnvimass F -1 v dom F
24 23 7 sseqtri F -1 v On
25 9 sselda φ v A v ran F
26 inisegn0 v ran F F -1 v
27 25 26 sylib φ v A F -1 v
28 onint F -1 v On F -1 v F -1 v F -1 v
29 24 27 28 sylancr φ v A F -1 v F -1 v
30 fniniseg F Fn On F -1 v F -1 v F -1 v On F F -1 v = v
31 5 30 ax-mp F -1 v F -1 v F -1 v On F F -1 v = v
32 31 simprbi F -1 v F -1 v F F -1 v = v
33 29 32 syl φ v A F F -1 v = v
34 33 adantrr φ v A w A F F -1 v = v
35 34 adantr φ v A w A F -1 v = F -1 w F F -1 v = v
36 cnvimass F -1 w dom F
37 36 7 sseqtri F -1 w On
38 9 sselda φ w A w ran F
39 inisegn0 w ran F F -1 w
40 38 39 sylib φ w A F -1 w
41 onint F -1 w On F -1 w F -1 w F -1 w
42 37 40 41 sylancr φ w A F -1 w F -1 w
43 fniniseg F Fn On F -1 w F -1 w F -1 w On F F -1 w = w
44 5 43 ax-mp F -1 w F -1 w F -1 w On F F -1 w = w
45 44 simprbi F -1 w F -1 w F F -1 w = w
46 42 45 syl φ w A F F -1 w = w
47 46 adantrl φ v A w A F F -1 w = w
48 47 adantr φ v A w A F -1 v = F -1 w F F -1 w = w
49 22 35 48 3eqtr3d φ v A w A F -1 v = F -1 w v = w
50 49 ex φ v A w A F -1 v = F -1 w v = w
51 20 50 sylbid φ v A w A x A F -1 x v = x A F -1 x w v = w
52 51 ralrimivva φ v A w A x A F -1 x v = x A F -1 x w v = w
53 dff13 x A F -1 x : A 1-1 On x A F -1 x : A On v A w A x A F -1 x v = x A F -1 x w v = w
54 15 52 53 sylanbrc φ x A F -1 x : A 1-1 On