Metamath Proof Explorer


Theorem dochexmidlem5

Description: Lemma for dochexmid . (Contributed by NM, 15-Jan-2015)

Ref Expression
Hypotheses dochexmidlem1.h H=LHypK
dochexmidlem1.o ˙=ocHKW
dochexmidlem1.u U=DVecHKW
dochexmidlem1.v V=BaseU
dochexmidlem1.s S=LSubSpU
dochexmidlem1.n N=LSpanU
dochexmidlem1.p ˙=LSSumU
dochexmidlem1.a A=LSAtomsU
dochexmidlem1.k φKHLWH
dochexmidlem1.x φXS
dochexmidlem5.pp φpA
dochexmidlem5.z 0˙=0U
dochexmidlem5.m M=X˙p
dochexmidlem5.xn φX0˙
dochexmidlem5.pl φ¬pX˙˙X
Assertion dochexmidlem5 φ˙XM=0˙

Proof

Step Hyp Ref Expression
1 dochexmidlem1.h H=LHypK
2 dochexmidlem1.o ˙=ocHKW
3 dochexmidlem1.u U=DVecHKW
4 dochexmidlem1.v V=BaseU
5 dochexmidlem1.s S=LSubSpU
6 dochexmidlem1.n N=LSpanU
7 dochexmidlem1.p ˙=LSSumU
8 dochexmidlem1.a A=LSAtomsU
9 dochexmidlem1.k φKHLWH
10 dochexmidlem1.x φXS
11 dochexmidlem5.pp φpA
12 dochexmidlem5.z 0˙=0U
13 dochexmidlem5.m M=X˙p
14 dochexmidlem5.xn φX0˙
15 dochexmidlem5.pl φ¬pX˙˙X
16 1 3 9 dvhlmod φULMod
17 16 adantr φ˙XM0˙ULMod
18 4 5 lssss XSXV
19 10 18 syl φXV
20 1 3 4 5 2 dochlss KHLWHXV˙XS
21 9 19 20 syl2anc φ˙XS
22 5 8 16 11 lsatlssel φpS
23 5 7 lsmcl ULModXSpSX˙pS
24 16 10 22 23 syl3anc φX˙pS
25 13 24 eqeltrid φMS
26 5 lssincl ULMod˙XSMS˙XMS
27 16 21 25 26 syl3anc φ˙XMS
28 27 adantr φ˙XM0˙˙XMS
29 simpr φ˙XM0˙˙XM0˙
30 5 12 8 17 28 29 lssatomic φ˙XM0˙qAq˙XM
31 30 ex φ˙XM0˙qAq˙XM
32 9 3ad2ant1 φqAq˙XMKHLWH
33 10 3ad2ant1 φqAq˙XMXS
34 11 3ad2ant1 φqAq˙XMpA
35 simp2 φqAq˙XMqA
36 14 3ad2ant1 φqAq˙XMX0˙
37 simp3 φqAq˙XMq˙XM
38 1 2 3 4 5 6 7 8 32 33 34 35 12 13 36 37 dochexmidlem4 φqAq˙XMpX˙˙X
39 38 rexlimdv3a φqAq˙XMpX˙˙X
40 31 39 syld φ˙XM0˙pX˙˙X
41 40 necon1bd φ¬pX˙˙X˙XM=0˙
42 15 41 mpd φ˙XM=0˙