Description: The characteristic of a domain can only be zero or a prime. (Contributed by Stefan O'Rear, 6-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | domnchr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne | |
|
2 | domnring | |
|
3 | eqid | |
|
4 | 3 | chrcl | |
5 | 2 4 | syl | |
6 | 5 | adantr | |
7 | simpr | |
|
8 | eldifsn | |
|
9 | 6 7 8 | sylanbrc | |
10 | dfn2 | |
|
11 | 9 10 | eleqtrrdi | |
12 | domnnzr | |
|
13 | nzrring | |
|
14 | chrnzr | |
|
15 | 13 14 | syl | |
16 | 15 | ibi | |
17 | 12 16 | syl | |
18 | 17 | adantr | |
19 | eluz2b3 | |
|
20 | 11 18 19 | sylanbrc | |
21 | 2 | ad2antrr | |
22 | eqid | |
|
23 | 22 | zrhrhm | |
24 | 21 23 | syl | |
25 | simprl | |
|
26 | simprr | |
|
27 | zringbas | |
|
28 | zringmulr | |
|
29 | eqid | |
|
30 | 27 28 29 | rhmmul | |
31 | 24 25 26 30 | syl3anc | |
32 | 31 | eqeq1d | |
33 | simpll | |
|
34 | eqid | |
|
35 | 27 34 | rhmf | |
36 | 24 35 | syl | |
37 | 36 25 | ffvelcdmd | |
38 | 36 26 | ffvelcdmd | |
39 | eqid | |
|
40 | 34 29 39 | domneq0 | |
41 | 33 37 38 40 | syl3anc | |
42 | 32 41 | bitrd | |
43 | 42 | biimpd | |
44 | zmulcl | |
|
45 | 44 | adantl | |
46 | 3 22 39 | chrdvds | |
47 | 21 45 46 | syl2anc | |
48 | 3 22 39 | chrdvds | |
49 | 21 25 48 | syl2anc | |
50 | 3 22 39 | chrdvds | |
51 | 21 26 50 | syl2anc | |
52 | 49 51 | orbi12d | |
53 | 43 47 52 | 3imtr4d | |
54 | 53 | ralrimivva | |
55 | isprm6 | |
|
56 | 20 54 55 | sylanbrc | |
57 | 56 | ex | |
58 | 1 57 | biimtrrid | |
59 | 58 | orrd | |