| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-ne |
|
| 2 |
|
domnring |
|
| 3 |
|
eqid |
|
| 4 |
3
|
chrcl |
|
| 5 |
2 4
|
syl |
|
| 6 |
5
|
adantr |
|
| 7 |
|
simpr |
|
| 8 |
|
eldifsn |
|
| 9 |
6 7 8
|
sylanbrc |
|
| 10 |
|
dfn2 |
|
| 11 |
9 10
|
eleqtrrdi |
|
| 12 |
|
domnnzr |
|
| 13 |
|
nzrring |
|
| 14 |
|
chrnzr |
|
| 15 |
13 14
|
syl |
|
| 16 |
15
|
ibi |
|
| 17 |
12 16
|
syl |
|
| 18 |
17
|
adantr |
|
| 19 |
|
eluz2b3 |
|
| 20 |
11 18 19
|
sylanbrc |
|
| 21 |
2
|
ad2antrr |
|
| 22 |
|
eqid |
|
| 23 |
22
|
zrhrhm |
|
| 24 |
21 23
|
syl |
|
| 25 |
|
simprl |
|
| 26 |
|
simprr |
|
| 27 |
|
zringbas |
|
| 28 |
|
zringmulr |
|
| 29 |
|
eqid |
|
| 30 |
27 28 29
|
rhmmul |
|
| 31 |
24 25 26 30
|
syl3anc |
|
| 32 |
31
|
eqeq1d |
|
| 33 |
|
simpll |
|
| 34 |
|
eqid |
|
| 35 |
27 34
|
rhmf |
|
| 36 |
24 35
|
syl |
|
| 37 |
36 25
|
ffvelcdmd |
|
| 38 |
36 26
|
ffvelcdmd |
|
| 39 |
|
eqid |
|
| 40 |
34 29 39
|
domneq0 |
|
| 41 |
33 37 38 40
|
syl3anc |
|
| 42 |
32 41
|
bitrd |
|
| 43 |
42
|
biimpd |
|
| 44 |
|
zmulcl |
|
| 45 |
44
|
adantl |
|
| 46 |
3 22 39
|
chrdvds |
|
| 47 |
21 45 46
|
syl2anc |
|
| 48 |
3 22 39
|
chrdvds |
|
| 49 |
21 25 48
|
syl2anc |
|
| 50 |
3 22 39
|
chrdvds |
|
| 51 |
21 26 50
|
syl2anc |
|
| 52 |
49 51
|
orbi12d |
|
| 53 |
43 47 52
|
3imtr4d |
|
| 54 |
53
|
ralrimivva |
|
| 55 |
|
isprm6 |
|
| 56 |
20 54 55
|
sylanbrc |
|
| 57 |
56
|
ex |
|
| 58 |
1 57
|
biimtrrid |
|
| 59 |
58
|
orrd |
|