Metamath Proof Explorer


Theorem domnchr

Description: The characteristic of a domain can only be zero or a prime. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Assertion domnchr RDomnchrR=0chrR

Proof

Step Hyp Ref Expression
1 df-ne chrR0¬chrR=0
2 domnring RDomnRRing
3 eqid chrR=chrR
4 3 chrcl RRingchrR0
5 2 4 syl RDomnchrR0
6 5 adantr RDomnchrR0chrR0
7 simpr RDomnchrR0chrR0
8 eldifsn chrR00chrR0chrR0
9 6 7 8 sylanbrc RDomnchrR0chrR00
10 dfn2 =00
11 9 10 eleqtrrdi RDomnchrR0chrR
12 domnnzr RDomnRNzRing
13 nzrring RNzRingRRing
14 chrnzr RRingRNzRingchrR1
15 13 14 syl RNzRingRNzRingchrR1
16 15 ibi RNzRingchrR1
17 12 16 syl RDomnchrR1
18 17 adantr RDomnchrR0chrR1
19 eluz2b3 chrR2chrRchrR1
20 11 18 19 sylanbrc RDomnchrR0chrR2
21 2 ad2antrr RDomnchrR0xyRRing
22 eqid ℤRHomR=ℤRHomR
23 22 zrhrhm RRingℤRHomRringRingHomR
24 21 23 syl RDomnchrR0xyℤRHomRringRingHomR
25 simprl RDomnchrR0xyx
26 simprr RDomnchrR0xyy
27 zringbas =Basering
28 zringmulr ×=ring
29 eqid R=R
30 27 28 29 rhmmul ℤRHomRringRingHomRxyℤRHomRxy=ℤRHomRxRℤRHomRy
31 24 25 26 30 syl3anc RDomnchrR0xyℤRHomRxy=ℤRHomRxRℤRHomRy
32 31 eqeq1d RDomnchrR0xyℤRHomRxy=0RℤRHomRxRℤRHomRy=0R
33 simpll RDomnchrR0xyRDomn
34 eqid BaseR=BaseR
35 27 34 rhmf ℤRHomRringRingHomRℤRHomR:BaseR
36 24 35 syl RDomnchrR0xyℤRHomR:BaseR
37 36 25 ffvelcdmd RDomnchrR0xyℤRHomRxBaseR
38 36 26 ffvelcdmd RDomnchrR0xyℤRHomRyBaseR
39 eqid 0R=0R
40 34 29 39 domneq0 RDomnℤRHomRxBaseRℤRHomRyBaseRℤRHomRxRℤRHomRy=0RℤRHomRx=0RℤRHomRy=0R
41 33 37 38 40 syl3anc RDomnchrR0xyℤRHomRxRℤRHomRy=0RℤRHomRx=0RℤRHomRy=0R
42 32 41 bitrd RDomnchrR0xyℤRHomRxy=0RℤRHomRx=0RℤRHomRy=0R
43 42 biimpd RDomnchrR0xyℤRHomRxy=0RℤRHomRx=0RℤRHomRy=0R
44 zmulcl xyxy
45 44 adantl RDomnchrR0xyxy
46 3 22 39 chrdvds RRingxychrRxyℤRHomRxy=0R
47 21 45 46 syl2anc RDomnchrR0xychrRxyℤRHomRxy=0R
48 3 22 39 chrdvds RRingxchrRxℤRHomRx=0R
49 21 25 48 syl2anc RDomnchrR0xychrRxℤRHomRx=0R
50 3 22 39 chrdvds RRingychrRyℤRHomRy=0R
51 21 26 50 syl2anc RDomnchrR0xychrRyℤRHomRy=0R
52 49 51 orbi12d RDomnchrR0xychrRxchrRyℤRHomRx=0RℤRHomRy=0R
53 43 47 52 3imtr4d RDomnchrR0xychrRxychrRxchrRy
54 53 ralrimivva RDomnchrR0xychrRxychrRxchrRy
55 isprm6 chrRchrR2xychrRxychrRxchrRy
56 20 54 55 sylanbrc RDomnchrR0chrR
57 56 ex RDomnchrR0chrR
58 1 57 biimtrrid RDomn¬chrR=0chrR
59 58 orrd RDomnchrR=0chrR