Metamath Proof Explorer


Theorem dprdfid

Description: A function mapping all but one arguments to zero sums to the value of this argument in a direct product. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 14-Jul-2019)

Ref Expression
Hypotheses eldprdi.0 0˙=0G
eldprdi.w W=hiISi|finSupp0˙h
eldprdi.1 φGdomDProdS
eldprdi.2 φdomS=I
dprdfid.3 φXI
dprdfid.4 φASX
dprdfid.f F=nIifn=XA0˙
Assertion dprdfid φFWGF=A

Proof

Step Hyp Ref Expression
1 eldprdi.0 0˙=0G
2 eldprdi.w W=hiISi|finSupp0˙h
3 eldprdi.1 φGdomDProdS
4 eldprdi.2 φdomS=I
5 dprdfid.3 φXI
6 dprdfid.4 φASX
7 dprdfid.f F=nIifn=XA0˙
8 6 ad2antrr φnIn=XASX
9 simpr φnIn=Xn=X
10 9 fveq2d φnIn=XSn=SX
11 8 10 eleqtrrd φnIn=XASn
12 3 4 dprdf2 φS:ISubGrpG
13 12 ffvelcdmda φnISnSubGrpG
14 1 subg0cl SnSubGrpG0˙Sn
15 13 14 syl φnI0˙Sn
16 15 adantr φnI¬n=X0˙Sn
17 11 16 ifclda φnIifn=XA0˙Sn
18 3 4 dprddomcld φIV
19 1 fvexi 0˙V
20 19 a1i φ0˙V
21 eqid nIifn=XA0˙=nIifn=XA0˙
22 18 20 21 sniffsupp φfinSupp0˙nIifn=XA0˙
23 2 3 4 17 22 dprdwd φnIifn=XA0˙W
24 7 23 eqeltrid φFW
25 eqid BaseG=BaseG
26 dprdgrp GdomDProdSGGrp
27 grpmnd GGrpGMnd
28 3 26 27 3syl φGMnd
29 2 3 4 24 25 dprdff φF:IBaseG
30 7 oveq1i Fsupp0˙=nIifn=XA0˙supp0˙
31 eldifsni nIXnX
32 31 adantl φnIXnX
33 ifnefalse nXifn=XA0˙=0˙
34 32 33 syl φnIXifn=XA0˙=0˙
35 34 18 suppss2 φnIifn=XA0˙supp0˙X
36 30 35 eqsstrid φFsupp0˙X
37 25 1 28 18 5 29 36 gsumpt φGF=FX
38 iftrue n=Xifn=XA0˙=A
39 7 38 5 6 fvmptd3 φFX=A
40 37 39 eqtrd φGF=A
41 24 40 jca φFWGF=A