Description: A function mapping all but one arguments to zero sums to the value of this argument in a direct product. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 14-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eldprdi.0 | |
|
eldprdi.w | |
||
eldprdi.1 | |
||
eldprdi.2 | |
||
dprdfid.3 | |
||
dprdfid.4 | |
||
dprdfid.f | |
||
Assertion | dprdfid | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldprdi.0 | |
|
2 | eldprdi.w | |
|
3 | eldprdi.1 | |
|
4 | eldprdi.2 | |
|
5 | dprdfid.3 | |
|
6 | dprdfid.4 | |
|
7 | dprdfid.f | |
|
8 | 6 | ad2antrr | |
9 | simpr | |
|
10 | 9 | fveq2d | |
11 | 8 10 | eleqtrrd | |
12 | 3 4 | dprdf2 | |
13 | 12 | ffvelcdmda | |
14 | 1 | subg0cl | |
15 | 13 14 | syl | |
16 | 15 | adantr | |
17 | 11 16 | ifclda | |
18 | 3 4 | dprddomcld | |
19 | 1 | fvexi | |
20 | 19 | a1i | |
21 | eqid | |
|
22 | 18 20 21 | sniffsupp | |
23 | 2 3 4 17 22 | dprdwd | |
24 | 7 23 | eqeltrid | |
25 | eqid | |
|
26 | dprdgrp | |
|
27 | grpmnd | |
|
28 | 3 26 27 | 3syl | |
29 | 2 3 4 24 25 | dprdff | |
30 | 7 | oveq1i | |
31 | eldifsni | |
|
32 | 31 | adantl | |
33 | ifnefalse | |
|
34 | 32 33 | syl | |
35 | 34 18 | suppss2 | |
36 | 30 35 | eqsstrid | |
37 | 25 1 28 18 5 29 36 | gsumpt | |
38 | iftrue | |
|
39 | 7 38 5 6 | fvmptd3 | |
40 | 37 39 | eqtrd | |
41 | 24 40 | jca | |