Metamath Proof Explorer


Theorem drngmul0or

Description: A product is zero iff one of its factors is zero. (Contributed by NM, 8-Oct-2014)

Ref Expression
Hypotheses drngmuleq0.b B=BaseR
drngmuleq0.o 0˙=0R
drngmuleq0.t ·˙=R
drngmuleq0.r φRDivRing
drngmuleq0.x φXB
drngmuleq0.y φYB
Assertion drngmul0or φX·˙Y=0˙X=0˙Y=0˙

Proof

Step Hyp Ref Expression
1 drngmuleq0.b B=BaseR
2 drngmuleq0.o 0˙=0R
3 drngmuleq0.t ·˙=R
4 drngmuleq0.r φRDivRing
5 drngmuleq0.x φXB
6 drngmuleq0.y φYB
7 df-ne X0˙¬X=0˙
8 oveq2 X·˙Y=0˙invrRX·˙X·˙Y=invrRX·˙0˙
9 8 ad2antlr φX·˙Y=0˙X0˙invrRX·˙X·˙Y=invrRX·˙0˙
10 4 adantr φX0˙RDivRing
11 5 adantr φX0˙XB
12 simpr φX0˙X0˙
13 eqid 1R=1R
14 eqid invrR=invrR
15 1 2 3 13 14 drnginvrl RDivRingXBX0˙invrRX·˙X=1R
16 10 11 12 15 syl3anc φX0˙invrRX·˙X=1R
17 16 oveq1d φX0˙invrRX·˙X·˙Y=1R·˙Y
18 drngring RDivRingRRing
19 4 18 syl φRRing
20 19 adantr φX0˙RRing
21 1 2 14 drnginvrcl RDivRingXBX0˙invrRXB
22 10 11 12 21 syl3anc φX0˙invrRXB
23 6 adantr φX0˙YB
24 1 3 ringass RRinginvrRXBXBYBinvrRX·˙X·˙Y=invrRX·˙X·˙Y
25 20 22 11 23 24 syl13anc φX0˙invrRX·˙X·˙Y=invrRX·˙X·˙Y
26 1 3 13 ringlidm RRingYB1R·˙Y=Y
27 19 6 26 syl2anc φ1R·˙Y=Y
28 27 adantr φX0˙1R·˙Y=Y
29 17 25 28 3eqtr3d φX0˙invrRX·˙X·˙Y=Y
30 29 adantlr φX·˙Y=0˙X0˙invrRX·˙X·˙Y=Y
31 19 adantr φX·˙Y=0˙RRing
32 31 adantr φX·˙Y=0˙X0˙RRing
33 22 adantlr φX·˙Y=0˙X0˙invrRXB
34 1 3 2 ringrz RRinginvrRXBinvrRX·˙0˙=0˙
35 32 33 34 syl2anc φX·˙Y=0˙X0˙invrRX·˙0˙=0˙
36 9 30 35 3eqtr3d φX·˙Y=0˙X0˙Y=0˙
37 36 ex φX·˙Y=0˙X0˙Y=0˙
38 7 37 biimtrrid φX·˙Y=0˙¬X=0˙Y=0˙
39 38 orrd φX·˙Y=0˙X=0˙Y=0˙
40 39 ex φX·˙Y=0˙X=0˙Y=0˙
41 1 3 2 ringlz RRingYB0˙·˙Y=0˙
42 19 6 41 syl2anc φ0˙·˙Y=0˙
43 oveq1 X=0˙X·˙Y=0˙·˙Y
44 43 eqeq1d X=0˙X·˙Y=0˙0˙·˙Y=0˙
45 42 44 syl5ibrcom φX=0˙X·˙Y=0˙
46 1 3 2 ringrz RRingXBX·˙0˙=0˙
47 19 5 46 syl2anc φX·˙0˙=0˙
48 oveq2 Y=0˙X·˙Y=X·˙0˙
49 48 eqeq1d Y=0˙X·˙Y=0˙X·˙0˙=0˙
50 47 49 syl5ibrcom φY=0˙X·˙Y=0˙
51 45 50 jaod φX=0˙Y=0˙X·˙Y=0˙
52 40 51 impbid φX·˙Y=0˙X=0˙Y=0˙