Description: A product is zero iff one of its factors is zero. (Contributed by NM, 8-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | drngmuleq0.b | |
|
drngmuleq0.o | |
||
drngmuleq0.t | |
||
drngmuleq0.r | |
||
drngmuleq0.x | |
||
drngmuleq0.y | |
||
Assertion | drngmul0or | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngmuleq0.b | |
|
2 | drngmuleq0.o | |
|
3 | drngmuleq0.t | |
|
4 | drngmuleq0.r | |
|
5 | drngmuleq0.x | |
|
6 | drngmuleq0.y | |
|
7 | df-ne | |
|
8 | oveq2 | |
|
9 | 8 | ad2antlr | |
10 | 4 | adantr | |
11 | 5 | adantr | |
12 | simpr | |
|
13 | eqid | |
|
14 | eqid | |
|
15 | 1 2 3 13 14 | drnginvrl | |
16 | 10 11 12 15 | syl3anc | |
17 | 16 | oveq1d | |
18 | drngring | |
|
19 | 4 18 | syl | |
20 | 19 | adantr | |
21 | 1 2 14 | drnginvrcl | |
22 | 10 11 12 21 | syl3anc | |
23 | 6 | adantr | |
24 | 1 3 | ringass | |
25 | 20 22 11 23 24 | syl13anc | |
26 | 1 3 13 | ringlidm | |
27 | 19 6 26 | syl2anc | |
28 | 27 | adantr | |
29 | 17 25 28 | 3eqtr3d | |
30 | 29 | adantlr | |
31 | 19 | adantr | |
32 | 31 | adantr | |
33 | 22 | adantlr | |
34 | 1 3 2 | ringrz | |
35 | 32 33 34 | syl2anc | |
36 | 9 30 35 | 3eqtr3d | |
37 | 36 | ex | |
38 | 7 37 | biimtrrid | |
39 | 38 | orrd | |
40 | 39 | ex | |
41 | 1 3 2 | ringlz | |
42 | 19 6 41 | syl2anc | |
43 | oveq1 | |
|
44 | 43 | eqeq1d | |
45 | 42 44 | syl5ibrcom | |
46 | 1 3 2 | ringrz | |
47 | 19 5 46 | syl2anc | |
48 | oveq2 | |
|
49 | 48 | eqeq1d | |
50 | 47 49 | syl5ibrcom | |
51 | 45 50 | jaod | |
52 | 40 51 | impbid | |