Metamath Proof Explorer
		
		
		
		Description:  A product is zero iff one of its factors is zero.  (Contributed by NM, 8-Oct-2014)  (Proof shortened by SN, 25-Jun-2025)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | drngmuleq0.b |  | 
					
						|  |  | drngmuleq0.o |  | 
					
						|  |  | drngmuleq0.t |  | 
					
						|  |  | drngmuleq0.r |  | 
					
						|  |  | drngmuleq0.x |  | 
					
						|  |  | drngmuleq0.y |  | 
				
					|  | Assertion | drngmul0or |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | drngmuleq0.b |  | 
						
							| 2 |  | drngmuleq0.o |  | 
						
							| 3 |  | drngmuleq0.t |  | 
						
							| 4 |  | drngmuleq0.r |  | 
						
							| 5 |  | drngmuleq0.x |  | 
						
							| 6 |  | drngmuleq0.y |  | 
						
							| 7 |  | drngdomn |  | 
						
							| 8 | 4 7 | syl |  | 
						
							| 9 | 1 3 2 | domneq0 |  | 
						
							| 10 | 8 5 6 9 | syl3anc |  |