Description: A division ring has only the two trivial ideals. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Wolf Lammen, 6-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | drngnidl.b | |
|
drngnidl.z | |
||
drngnidl.u | |
||
Assertion | drngnidl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngnidl.b | |
|
2 | drngnidl.z | |
|
3 | drngnidl.u | |
|
4 | animorrl | |
|
5 | drngring | |
|
6 | 5 | ad2antrr | |
7 | simplr | |
|
8 | simpr | |
|
9 | 3 2 | lidlnz | |
10 | 6 7 8 9 | syl3anc | |
11 | simpll | |
|
12 | 1 3 | lidlss | |
13 | 12 | adantl | |
14 | 13 | sselda | |
15 | 14 | adantrr | |
16 | simprr | |
|
17 | eqid | |
|
18 | eqid | |
|
19 | eqid | |
|
20 | 1 2 17 18 19 | drnginvrl | |
21 | 11 15 16 20 | syl3anc | |
22 | 5 | ad2antrr | |
23 | simplr | |
|
24 | 1 2 19 | drnginvrcl | |
25 | 11 15 16 24 | syl3anc | |
26 | simprl | |
|
27 | 3 1 17 | lidlmcl | |
28 | 22 23 25 26 27 | syl22anc | |
29 | 21 28 | eqeltrrd | |
30 | 29 | rexlimdvaa | |
31 | 30 | imp | |
32 | 10 31 | syldan | |
33 | 3 1 18 | lidl1el | |
34 | 5 33 | sylan | |
35 | 34 | adantr | |
36 | 32 35 | mpbid | |
37 | 36 | olcd | |
38 | 4 37 | pm2.61dane | |
39 | vex | |
|
40 | 39 | elpr | |
41 | 38 40 | sylibr | |
42 | 41 | ex | |
43 | 42 | ssrdv | |
44 | 3 2 | lidl0 | |
45 | 3 1 | lidl1 | |
46 | 44 45 | prssd | |
47 | 5 46 | syl | |
48 | 43 47 | eqssd | |