Metamath Proof Explorer


Theorem drngnidl

Description: A division ring has only the two trivial ideals. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Wolf Lammen, 6-Sep-2020)

Ref Expression
Hypotheses drngnidl.b B=BaseR
drngnidl.z 0˙=0R
drngnidl.u U=LIdealR
Assertion drngnidl RDivRingU=0˙B

Proof

Step Hyp Ref Expression
1 drngnidl.b B=BaseR
2 drngnidl.z 0˙=0R
3 drngnidl.u U=LIdealR
4 animorrl RDivRingaUa=0˙a=0˙a=B
5 drngring RDivRingRRing
6 5 ad2antrr RDivRingaUa0˙RRing
7 simplr RDivRingaUa0˙aU
8 simpr RDivRingaUa0˙a0˙
9 3 2 lidlnz RRingaUa0˙bab0˙
10 6 7 8 9 syl3anc RDivRingaUa0˙bab0˙
11 simpll RDivRingaUbab0˙RDivRing
12 1 3 lidlss aUaB
13 12 adantl RDivRingaUaB
14 13 sselda RDivRingaUbabB
15 14 adantrr RDivRingaUbab0˙bB
16 simprr RDivRingaUbab0˙b0˙
17 eqid R=R
18 eqid 1R=1R
19 eqid invrR=invrR
20 1 2 17 18 19 drnginvrl RDivRingbBb0˙invrRbRb=1R
21 11 15 16 20 syl3anc RDivRingaUbab0˙invrRbRb=1R
22 5 ad2antrr RDivRingaUbab0˙RRing
23 simplr RDivRingaUbab0˙aU
24 1 2 19 drnginvrcl RDivRingbBb0˙invrRbB
25 11 15 16 24 syl3anc RDivRingaUbab0˙invrRbB
26 simprl RDivRingaUbab0˙ba
27 3 1 17 lidlmcl RRingaUinvrRbBbainvrRbRba
28 22 23 25 26 27 syl22anc RDivRingaUbab0˙invrRbRba
29 21 28 eqeltrrd RDivRingaUbab0˙1Ra
30 29 rexlimdvaa RDivRingaUbab0˙1Ra
31 30 imp RDivRingaUbab0˙1Ra
32 10 31 syldan RDivRingaUa0˙1Ra
33 3 1 18 lidl1el RRingaU1Raa=B
34 5 33 sylan RDivRingaU1Raa=B
35 34 adantr RDivRingaUa0˙1Raa=B
36 32 35 mpbid RDivRingaUa0˙a=B
37 36 olcd RDivRingaUa0˙a=0˙a=B
38 4 37 pm2.61dane RDivRingaUa=0˙a=B
39 vex aV
40 39 elpr a0˙Ba=0˙a=B
41 38 40 sylibr RDivRingaUa0˙B
42 41 ex RDivRingaUa0˙B
43 42 ssrdv RDivRingU0˙B
44 3 2 lidl0 RRing0˙U
45 3 1 lidl1 RRingBU
46 44 45 prssd RRing0˙BU
47 5 46 syl RDivRing0˙BU
48 43 47 eqssd RDivRingU=0˙B