| Step | Hyp | Ref | Expression | 
						
							| 1 |  | drngnidl.b |  | 
						
							| 2 |  | drngnidl.z |  | 
						
							| 3 |  | drngnidl.u |  | 
						
							| 4 |  | animorrl |  | 
						
							| 5 |  | drngring |  | 
						
							| 6 | 5 | ad2antrr |  | 
						
							| 7 |  | simplr |  | 
						
							| 8 |  | simpr |  | 
						
							| 9 | 3 2 | lidlnz |  | 
						
							| 10 | 6 7 8 9 | syl3anc |  | 
						
							| 11 |  | simpll |  | 
						
							| 12 | 1 3 | lidlss |  | 
						
							| 13 | 12 | adantl |  | 
						
							| 14 | 13 | sselda |  | 
						
							| 15 | 14 | adantrr |  | 
						
							| 16 |  | simprr |  | 
						
							| 17 |  | eqid |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 |  | eqid |  | 
						
							| 20 | 1 2 17 18 19 | drnginvrl |  | 
						
							| 21 | 11 15 16 20 | syl3anc |  | 
						
							| 22 | 5 | ad2antrr |  | 
						
							| 23 |  | simplr |  | 
						
							| 24 | 1 2 19 | drnginvrcl |  | 
						
							| 25 | 11 15 16 24 | syl3anc |  | 
						
							| 26 |  | simprl |  | 
						
							| 27 | 3 1 17 | lidlmcl |  | 
						
							| 28 | 22 23 25 26 27 | syl22anc |  | 
						
							| 29 | 21 28 | eqeltrrd |  | 
						
							| 30 | 29 | rexlimdvaa |  | 
						
							| 31 | 30 | imp |  | 
						
							| 32 | 10 31 | syldan |  | 
						
							| 33 | 3 1 18 | lidl1el |  | 
						
							| 34 | 5 33 | sylan |  | 
						
							| 35 | 34 | adantr |  | 
						
							| 36 | 32 35 | mpbid |  | 
						
							| 37 | 36 | olcd |  | 
						
							| 38 | 4 37 | pm2.61dane |  | 
						
							| 39 |  | vex |  | 
						
							| 40 | 39 | elpr |  | 
						
							| 41 | 38 40 | sylibr |  | 
						
							| 42 | 41 | ex |  | 
						
							| 43 | 42 | ssrdv |  | 
						
							| 44 | 3 2 | lidl0 |  | 
						
							| 45 | 3 1 | lidl1 |  | 
						
							| 46 | 44 45 | prssd |  | 
						
							| 47 | 5 46 | syl |  | 
						
							| 48 | 43 47 | eqssd |  |