| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dsmmcl.p |  | 
						
							| 2 |  | dsmmcl.h |  | 
						
							| 3 |  | dsmmcl.i |  | 
						
							| 4 |  | dsmmcl.s |  | 
						
							| 5 |  | dsmmcl.r |  | 
						
							| 6 |  | dsmmacl.j |  | 
						
							| 7 |  | dsmmacl.k |  | 
						
							| 8 |  | dsmmacl.a |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 | 5 | ffnd |  | 
						
							| 12 | 1 10 9 2 3 11 | dsmmelbas |  | 
						
							| 13 | 6 12 | mpbid |  | 
						
							| 14 | 13 | simpld |  | 
						
							| 15 | 1 10 9 2 3 11 | dsmmelbas |  | 
						
							| 16 | 7 15 | mpbid |  | 
						
							| 17 | 16 | simpld |  | 
						
							| 18 | 1 9 8 4 3 5 14 17 | prdsplusgcl |  | 
						
							| 19 | 4 | adantr |  | 
						
							| 20 | 3 | adantr |  | 
						
							| 21 | 11 | adantr |  | 
						
							| 22 | 14 | adantr |  | 
						
							| 23 | 17 | adantr |  | 
						
							| 24 |  | simpr |  | 
						
							| 25 | 1 9 19 20 21 22 23 8 24 | prdsplusgfval |  | 
						
							| 26 | 25 | neeq1d |  | 
						
							| 27 | 26 | rabbidva |  | 
						
							| 28 | 13 | simprd |  | 
						
							| 29 | 16 | simprd |  | 
						
							| 30 |  | unfi |  | 
						
							| 31 | 28 29 30 | syl2anc |  | 
						
							| 32 |  | neorian |  | 
						
							| 33 | 32 | bicomi |  | 
						
							| 34 | 33 | con1bii |  | 
						
							| 35 | 5 | ffvelcdmda |  | 
						
							| 36 |  | eqid |  | 
						
							| 37 |  | eqid |  | 
						
							| 38 | 36 37 | mndidcl |  | 
						
							| 39 |  | eqid |  | 
						
							| 40 | 36 39 37 | mndlid |  | 
						
							| 41 | 35 38 40 | syl2anc2 |  | 
						
							| 42 |  | oveq12 |  | 
						
							| 43 | 42 | eqeq1d |  | 
						
							| 44 | 41 43 | syl5ibrcom |  | 
						
							| 45 | 34 44 | biimtrid |  | 
						
							| 46 | 45 | necon1ad |  | 
						
							| 47 | 46 | ss2rabdv |  | 
						
							| 48 |  | unrab |  | 
						
							| 49 | 47 48 | sseqtrrdi |  | 
						
							| 50 | 31 49 | ssfid |  | 
						
							| 51 | 27 50 | eqeltrd |  | 
						
							| 52 | 1 10 9 2 3 11 | dsmmelbas |  | 
						
							| 53 | 18 51 52 | mpbir2and |  |