Metamath Proof Explorer


Theorem dsmmacl

Description: The finite hull is closed under addition. (Contributed by Stefan O'Rear, 11-Jan-2015)

Ref Expression
Hypotheses dsmmcl.p P=S𝑠R
dsmmcl.h H=BaseSmR
dsmmcl.i φIW
dsmmcl.s φSV
dsmmcl.r φR:IMnd
dsmmacl.j φJH
dsmmacl.k φKH
dsmmacl.a +˙=+P
Assertion dsmmacl φJ+˙KH

Proof

Step Hyp Ref Expression
1 dsmmcl.p P=S𝑠R
2 dsmmcl.h H=BaseSmR
3 dsmmcl.i φIW
4 dsmmcl.s φSV
5 dsmmcl.r φR:IMnd
6 dsmmacl.j φJH
7 dsmmacl.k φKH
8 dsmmacl.a +˙=+P
9 eqid BaseP=BaseP
10 eqid SmR=SmR
11 5 ffnd φRFnI
12 1 10 9 2 3 11 dsmmelbas φJHJBasePaI|Ja0RaFin
13 6 12 mpbid φJBasePaI|Ja0RaFin
14 13 simpld φJBaseP
15 1 10 9 2 3 11 dsmmelbas φKHKBasePaI|Ka0RaFin
16 7 15 mpbid φKBasePaI|Ka0RaFin
17 16 simpld φKBaseP
18 1 9 8 4 3 5 14 17 prdsplusgcl φJ+˙KBaseP
19 4 adantr φaISV
20 3 adantr φaIIW
21 11 adantr φaIRFnI
22 14 adantr φaIJBaseP
23 17 adantr φaIKBaseP
24 simpr φaIaI
25 1 9 19 20 21 22 23 8 24 prdsplusgfval φaIJ+˙Ka=Ja+RaKa
26 25 neeq1d φaIJ+˙Ka0RaJa+RaKa0Ra
27 26 rabbidva φaI|J+˙Ka0Ra=aI|Ja+RaKa0Ra
28 13 simprd φaI|Ja0RaFin
29 16 simprd φaI|Ka0RaFin
30 unfi aI|Ja0RaFinaI|Ka0RaFinaI|Ja0RaaI|Ka0RaFin
31 28 29 30 syl2anc φaI|Ja0RaaI|Ka0RaFin
32 neorian Ja0RaKa0Ra¬Ja=0RaKa=0Ra
33 32 bicomi ¬Ja=0RaKa=0RaJa0RaKa0Ra
34 33 con1bii ¬Ja0RaKa0RaJa=0RaKa=0Ra
35 5 ffvelcdmda φaIRaMnd
36 eqid BaseRa=BaseRa
37 eqid 0Ra=0Ra
38 36 37 mndidcl RaMnd0RaBaseRa
39 eqid +Ra=+Ra
40 36 39 37 mndlid RaMnd0RaBaseRa0Ra+Ra0Ra=0Ra
41 35 38 40 syl2anc2 φaI0Ra+Ra0Ra=0Ra
42 oveq12 Ja=0RaKa=0RaJa+RaKa=0Ra+Ra0Ra
43 42 eqeq1d Ja=0RaKa=0RaJa+RaKa=0Ra0Ra+Ra0Ra=0Ra
44 41 43 syl5ibrcom φaIJa=0RaKa=0RaJa+RaKa=0Ra
45 34 44 biimtrid φaI¬Ja0RaKa0RaJa+RaKa=0Ra
46 45 necon1ad φaIJa+RaKa0RaJa0RaKa0Ra
47 46 ss2rabdv φaI|Ja+RaKa0RaaI|Ja0RaKa0Ra
48 unrab aI|Ja0RaaI|Ka0Ra=aI|Ja0RaKa0Ra
49 47 48 sseqtrrdi φaI|Ja+RaKa0RaaI|Ja0RaaI|Ka0Ra
50 31 49 ssfid φaI|Ja+RaKa0RaFin
51 27 50 eqeltrd φaI|J+˙Ka0RaFin
52 1 10 9 2 3 11 dsmmelbas φJ+˙KHJ+˙KBasePaI|J+˙Ka0RaFin
53 18 51 52 mpbir2and φJ+˙KH