Description: The finite hull is closed under addition. (Contributed by Stefan O'Rear, 11-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dsmmcl.p | |
|
dsmmcl.h | |
||
dsmmcl.i | |
||
dsmmcl.s | |
||
dsmmcl.r | |
||
dsmmacl.j | |
||
dsmmacl.k | |
||
dsmmacl.a | |
||
Assertion | dsmmacl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dsmmcl.p | |
|
2 | dsmmcl.h | |
|
3 | dsmmcl.i | |
|
4 | dsmmcl.s | |
|
5 | dsmmcl.r | |
|
6 | dsmmacl.j | |
|
7 | dsmmacl.k | |
|
8 | dsmmacl.a | |
|
9 | eqid | |
|
10 | eqid | |
|
11 | 5 | ffnd | |
12 | 1 10 9 2 3 11 | dsmmelbas | |
13 | 6 12 | mpbid | |
14 | 13 | simpld | |
15 | 1 10 9 2 3 11 | dsmmelbas | |
16 | 7 15 | mpbid | |
17 | 16 | simpld | |
18 | 1 9 8 4 3 5 14 17 | prdsplusgcl | |
19 | 4 | adantr | |
20 | 3 | adantr | |
21 | 11 | adantr | |
22 | 14 | adantr | |
23 | 17 | adantr | |
24 | simpr | |
|
25 | 1 9 19 20 21 22 23 8 24 | prdsplusgfval | |
26 | 25 | neeq1d | |
27 | 26 | rabbidva | |
28 | 13 | simprd | |
29 | 16 | simprd | |
30 | unfi | |
|
31 | 28 29 30 | syl2anc | |
32 | neorian | |
|
33 | 32 | bicomi | |
34 | 33 | con1bii | |
35 | 5 | ffvelcdmda | |
36 | eqid | |
|
37 | eqid | |
|
38 | 36 37 | mndidcl | |
39 | eqid | |
|
40 | 36 39 37 | mndlid | |
41 | 35 38 40 | syl2anc2 | |
42 | oveq12 | |
|
43 | 42 | eqeq1d | |
44 | 41 43 | syl5ibrcom | |
45 | 34 44 | biimtrid | |
46 | 45 | necon1ad | |
47 | 46 | ss2rabdv | |
48 | unrab | |
|
49 | 47 48 | sseqtrrdi | |
50 | 31 49 | ssfid | |
51 | 27 50 | eqeltrd | |
52 | 1 10 9 2 3 11 | dsmmelbas | |
53 | 18 51 52 | mpbir2and | |