Metamath Proof Explorer


Theorem dstregt0

Description: A complex number A that is not real, has a distance from the reals that is strictly larger than 0 . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis dstregt0.1 φA
Assertion dstregt0 φx+yx<Ay

Proof

Step Hyp Ref Expression
1 dstregt0.1 φA
2 1 eldifad φA
3 2 imcld φA
4 3 recnd φA
5 1 eldifbd φ¬A
6 reim0b AAA=0
7 2 6 syl φAA=0
8 5 7 mtbid φ¬A=0
9 8 neqned φA0
10 4 9 absrpcld φA+
11 10 rphalfcld φA2+
12 2 adantr φyA
13 recn yy
14 13 adantl φyy
15 12 14 imsubd φyAy=Ay
16 simpr φyy
17 16 reim0d φyy=0
18 17 oveq2d φyAy=A0
19 4 adantr φyA
20 19 subid1d φyA0=A
21 15 18 20 3eqtrrd φyA=Ay
22 21 fveq2d φyA=Ay
23 22 oveq1d φyA2=Ay2
24 21 19 eqeltrrd φyAy
25 24 abscld φyAy
26 25 rehalfcld φyAy2
27 12 14 subcld φyAy
28 27 abscld φyAy
29 9 adantr φyA0
30 21 29 eqnetrrd φyAy0
31 24 30 absrpcld φyAy+
32 rphalflt Ay+Ay2<Ay
33 31 32 syl φyAy2<Ay
34 absimle AyAyAy
35 27 34 syl φyAyAy
36 26 25 28 33 35 ltletrd φyAy2<Ay
37 23 36 eqbrtrd φyA2<Ay
38 37 ralrimiva φyA2<Ay
39 breq1 x=A2x<AyA2<Ay
40 39 ralbidv x=A2yx<AyyA2<Ay
41 40 rspcev A2+yA2<Ayx+yx<Ay
42 11 38 41 syl2anc φx+yx<Ay