Description: The set of differentiable points is a subset of the ambient topology. (Contributed by Mario Carneiro, 18-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | dvbsss | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dv | |
|
2 | 1 | reldmmpo | |
3 | df-rel | |
|
4 | 2 3 | mpbi | |
5 | 4 | sseli | |
6 | opelxp1 | |
|
7 | 5 6 | syl | |
8 | opeq1 | |
|
9 | 8 | eleq1d | |
10 | eleq1 | |
|
11 | oveq2 | |
|
12 | 11 | eleq2d | |
13 | 10 12 | anbi12d | |
14 | 9 13 | imbi12d | |
15 | 1 | dmmpossx | |
16 | 15 | sseli | |
17 | opeliunxp | |
|
18 | 16 17 | sylib | |
19 | 14 18 | vtoclg | |
20 | 7 19 | mpcom | |
21 | 20 | simpld | |
22 | 21 | elpwid | |
23 | 20 | simprd | |
24 | cnex | |
|
25 | elpm2g | |
|
26 | 24 21 25 | sylancr | |
27 | 23 26 | mpbid | |
28 | 27 | simpld | |
29 | 27 | simprd | |
30 | 22 28 29 | dvbss | |
31 | 30 29 | sstrd | |
32 | df-ov | |
|
33 | ndmfv | |
|
34 | 32 33 | eqtrid | |
35 | 34 | dmeqd | |
36 | dm0 | |
|
37 | 35 36 | eqtrdi | |
38 | 0ss | |
|
39 | 37 38 | eqsstrdi | |
40 | 31 39 | pm2.61i | |