Description: A sufficient condition for the derivative of a quotient to be continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvdivcncf.s | |
|
dvdivcncf.f | |
||
dvdivcncf.g | |
||
dvdivcncf.fdv | |
||
dvdivcncf.gdv | |
||
Assertion | dvdivcncf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdivcncf.s | |
|
2 | dvdivcncf.f | |
|
3 | dvdivcncf.g | |
|
4 | dvdivcncf.fdv | |
|
5 | dvdivcncf.gdv | |
|
6 | cncff | |
|
7 | fdm | |
|
8 | 4 6 7 | 3syl | |
9 | cncff | |
|
10 | fdm | |
|
11 | 5 9 10 | 3syl | |
12 | 1 2 3 8 11 | dvdivf | |
13 | ax-resscn | |
|
14 | sseq1 | |
|
15 | 13 14 | mpbiri | |
16 | eqimss | |
|
17 | 15 16 | pm3.2i | |
18 | elpri | |
|
19 | 1 18 | syl | |
20 | pm3.44 | |
|
21 | 17 19 20 | mpsyl | |
22 | difssd | |
|
23 | 3 22 | fssd | |
24 | dvbsss | |
|
25 | 8 24 | eqsstrrdi | |
26 | dvcn | |
|
27 | 21 23 25 11 26 | syl31anc | |
28 | 4 27 | mulcncff | |
29 | dvcn | |
|
30 | 21 2 25 8 29 | syl31anc | |
31 | 5 30 | mulcncff | |
32 | 28 31 | subcncff | |
33 | eldifi | |
|
34 | 33 | adantr | |
35 | eldifi | |
|
36 | 35 | adantl | |
37 | 34 36 | mulcld | |
38 | eldifsni | |
|
39 | 38 | adantr | |
40 | eldifsni | |
|
41 | 40 | adantl | |
42 | 34 36 39 41 | mulne0d | |
43 | eldifsn | |
|
44 | 37 42 43 | sylanbrc | |
45 | 44 | adantl | |
46 | 1 25 | ssexd | |
47 | inidm | |
|
48 | 45 3 3 46 46 47 | off | |
49 | 27 27 | mulcncff | |
50 | cncfcdm | |
|
51 | 22 49 50 | syl2anc | |
52 | 48 51 | mpbird | |
53 | 32 52 | divcncff | |
54 | 12 53 | eqeltrd | |