Metamath Proof Explorer


Theorem dvdivcncf

Description: A sufficient condition for the derivative of a quotient to be continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses dvdivcncf.s φS
dvdivcncf.f φF:X
dvdivcncf.g φG:X0
dvdivcncf.fdv φFS:Xcn
dvdivcncf.gdv φGS:Xcn
Assertion dvdivcncf φF÷fGS:Xcn

Proof

Step Hyp Ref Expression
1 dvdivcncf.s φS
2 dvdivcncf.f φF:X
3 dvdivcncf.g φG:X0
4 dvdivcncf.fdv φFS:Xcn
5 dvdivcncf.gdv φGS:Xcn
6 cncff FS:XcnFS:X
7 fdm FS:XdomFS=X
8 4 6 7 3syl φdomFS=X
9 cncff GS:XcnGS:X
10 fdm GS:XdomGS=X
11 5 9 10 3syl φdomGS=X
12 1 2 3 8 11 dvdivf φSDF÷fG=FS×fGfGS×fF÷fG×fG
13 ax-resscn
14 sseq1 S=S
15 13 14 mpbiri S=S
16 eqimss S=S
17 15 16 pm3.2i S=SS=S
18 elpri SS=S=
19 1 18 syl φS=S=
20 pm3.44 S=SS=SS=S=S
21 17 19 20 mpsyl φS
22 difssd φ0
23 3 22 fssd φG:X
24 dvbsss domFSS
25 8 24 eqsstrrdi φXS
26 dvcn SG:XXSdomGS=XG:Xcn
27 21 23 25 11 26 syl31anc φG:Xcn
28 4 27 mulcncff φFS×fG:Xcn
29 dvcn SF:XXSdomFS=XF:Xcn
30 21 2 25 8 29 syl31anc φF:Xcn
31 5 30 mulcncff φGS×fF:Xcn
32 28 31 subcncff φFS×fGfGS×fF:Xcn
33 eldifi x0x
34 33 adantr x0y0x
35 eldifi y0y
36 35 adantl x0y0y
37 34 36 mulcld x0y0xy
38 eldifsni x0x0
39 38 adantr x0y0x0
40 eldifsni y0y0
41 40 adantl x0y0y0
42 34 36 39 41 mulne0d x0y0xy0
43 eldifsn xy0xyxy0
44 37 42 43 sylanbrc x0y0xy0
45 44 adantl φx0y0xy0
46 1 25 ssexd φXV
47 inidm XX=X
48 45 3 3 46 46 47 off φG×fG:X0
49 27 27 mulcncff φG×fG:Xcn
50 cncfcdm 0G×fG:XcnG×fG:Xcn0G×fG:X0
51 22 49 50 syl2anc φG×fG:Xcn0G×fG:X0
52 48 51 mpbird φG×fG:Xcn0
53 32 52 divcncff φFS×fGfGS×fF÷fG×fG:Xcn
54 12 53 eqeltrd φF÷fGS:Xcn