Description: The derivative of a real function is real. (Contributed by Mario Carneiro, 1-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | dvfre | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvf | |
|
2 | ffn | |
|
3 | 1 2 | mp1i | |
4 | 1 | ffvelcdmi | |
5 | 4 | adantl | |
6 | simpr | |
|
7 | fvco3 | |
|
8 | 1 6 7 | sylancr | |
9 | ax-resscn | |
|
10 | fss | |
|
11 | 9 10 | mpan2 | |
12 | dvcj | |
|
13 | 11 12 | sylan | |
14 | ffvelcdm | |
|
15 | 14 | adantlr | |
16 | 15 | cjred | |
17 | 16 | mpteq2dva | |
18 | 15 | recnd | |
19 | simpl | |
|
20 | 19 | feqmptd | |
21 | cjf | |
|
22 | 21 | a1i | |
23 | 22 | feqmptd | |
24 | fveq2 | |
|
25 | 18 20 23 24 | fmptco | |
26 | 17 25 20 | 3eqtr4d | |
27 | 26 | oveq2d | |
28 | 13 27 | eqtr3d | |
29 | 28 | fveq1d | |
30 | 29 | adantr | |
31 | 8 30 | eqtr3d | |
32 | 5 31 | cjrebd | |
33 | 32 | ralrimiva | |
34 | ffnfv | |
|
35 | 3 33 34 | sylanbrc | |