Metamath Proof Explorer


Theorem dvfval

Description: Value and set bounds on the derivative operator. (Contributed by Mario Carneiro, 7-Aug-2014) (Revised by Mario Carneiro, 25-Dec-2016)

Ref Expression
Hypotheses dvval.t T=K𝑡S
dvval.k K=TopOpenfld
Assertion dvfval SF:AASSDF=xintTAx×zAxFzFxzxlimxSDFintTA×

Proof

Step Hyp Ref Expression
1 dvval.t T=K𝑡S
2 dvval.k K=TopOpenfld
3 df-dv D=s𝒫,f𝑝𝑚sxintTopOpenfld𝑡sdomfx×zdomfxfzfxzxlimx
4 3 a1i SF:AASD=s𝒫,f𝑝𝑚sxintTopOpenfld𝑡sdomfx×zdomfxfzfxzxlimx
5 2 oveq1i K𝑡s=TopOpenfld𝑡s
6 simprl SF:AASs=Sf=Fs=S
7 6 oveq2d SF:AASs=Sf=FK𝑡s=K𝑡S
8 7 1 eqtr4di SF:AASs=Sf=FK𝑡s=T
9 5 8 eqtr3id SF:AASs=Sf=FTopOpenfld𝑡s=T
10 9 fveq2d SF:AASs=Sf=FintTopOpenfld𝑡s=intT
11 simprr SF:AASs=Sf=Ff=F
12 11 dmeqd SF:AASs=Sf=Fdomf=domF
13 simpl2 SF:AASs=Sf=FF:A
14 13 fdmd SF:AASs=Sf=FdomF=A
15 12 14 eqtrd SF:AASs=Sf=Fdomf=A
16 10 15 fveq12d SF:AASs=Sf=FintTopOpenfld𝑡sdomf=intTA
17 15 difeq1d SF:AASs=Sf=Fdomfx=Ax
18 11 fveq1d SF:AASs=Sf=Ffz=Fz
19 11 fveq1d SF:AASs=Sf=Ffx=Fx
20 18 19 oveq12d SF:AASs=Sf=Ffzfx=FzFx
21 20 oveq1d SF:AASs=Sf=Ffzfxzx=FzFxzx
22 17 21 mpteq12dv SF:AASs=Sf=Fzdomfxfzfxzx=zAxFzFxzx
23 22 oveq1d SF:AASs=Sf=Fzdomfxfzfxzxlimx=zAxFzFxzxlimx
24 23 xpeq2d SF:AASs=Sf=Fx×zdomfxfzfxzxlimx=x×zAxFzFxzxlimx
25 16 24 iuneq12d SF:AASs=Sf=FxintTopOpenfld𝑡sdomfx×zdomfxfzfxzxlimx=xintTAx×zAxFzFxzxlimx
26 simpr SF:AASs=Ss=S
27 26 oveq2d SF:AASs=S𝑝𝑚s=𝑝𝑚S
28 simp1 SF:AASS
29 cnex V
30 29 elpw2 S𝒫S
31 28 30 sylibr SF:AASS𝒫
32 29 a1i SF:AASV
33 simp2 SF:AASF:A
34 simp3 SF:AASAS
35 elpm2r VS𝒫F:AASF𝑝𝑚S
36 32 31 33 34 35 syl22anc SF:AASF𝑝𝑚S
37 limccl zAxFzFxzxlimx
38 xpss2 zAxFzFxzxlimxx×zAxFzFxzxlimxx×
39 37 38 ax-mp x×zAxFzFxzxlimxx×
40 39 rgenw xintTAx×zAxFzFxzxlimxx×
41 ss2iun xintTAx×zAxFzFxzxlimxx×xintTAx×zAxFzFxzxlimxxintTAx×
42 40 41 ax-mp xintTAx×zAxFzFxzxlimxxintTAx×
43 iunxpconst xintTAx×=intTA×
44 42 43 sseqtri xintTAx×zAxFzFxzxlimxintTA×
45 44 a1i SF:AASxintTAx×zAxFzFxzxlimxintTA×
46 fvex intTAV
47 46 29 xpex intTA×V
48 47 ssex xintTAx×zAxFzFxzxlimxintTA×xintTAx×zAxFzFxzxlimxV
49 45 48 syl SF:AASxintTAx×zAxFzFxzxlimxV
50 4 25 27 31 36 49 ovmpodx SF:AASSDF=xintTAx×zAxFzFxzxlimx
51 50 45 eqsstrd SF:AASSDFintTA×
52 50 51 jca SF:AASSDF=xintTAx×zAxFzFxzxlimxSDFintTA×