Metamath Proof Explorer


Theorem dvhvaddass

Description: Associativity of vector sum. (Contributed by NM, 31-Oct-2013)

Ref Expression
Hypotheses dvhvaddcl.h H = LHyp K
dvhvaddcl.t T = LTrn K W
dvhvaddcl.e E = TEndo K W
dvhvaddcl.u U = DVecH K W
dvhvaddcl.d D = Scalar U
dvhvaddcl.p ˙ = + D
dvhvaddcl.a + ˙ = + U
Assertion dvhvaddass K HL W H F T × E G T × E I T × E F + ˙ G + ˙ I = F + ˙ G + ˙ I

Proof

Step Hyp Ref Expression
1 dvhvaddcl.h H = LHyp K
2 dvhvaddcl.t T = LTrn K W
3 dvhvaddcl.e E = TEndo K W
4 dvhvaddcl.u U = DVecH K W
5 dvhvaddcl.d D = Scalar U
6 dvhvaddcl.p ˙ = + D
7 dvhvaddcl.a + ˙ = + U
8 coass 1 st F 1 st G 1 st I = 1 st F 1 st G 1 st I
9 1 2 3 4 5 7 6 dvhvadd K HL W H F T × E G T × E F + ˙ G = 1 st F 1 st G 2 nd F ˙ 2 nd G
10 9 3adantr3 K HL W H F T × E G T × E I T × E F + ˙ G = 1 st F 1 st G 2 nd F ˙ 2 nd G
11 10 fveq2d K HL W H F T × E G T × E I T × E 1 st F + ˙ G = 1 st 1 st F 1 st G 2 nd F ˙ 2 nd G
12 fvex 1 st F V
13 fvex 1 st G V
14 12 13 coex 1 st F 1 st G V
15 ovex 2 nd F ˙ 2 nd G V
16 14 15 op1st 1 st 1 st F 1 st G 2 nd F ˙ 2 nd G = 1 st F 1 st G
17 11 16 eqtrdi K HL W H F T × E G T × E I T × E 1 st F + ˙ G = 1 st F 1 st G
18 17 coeq1d K HL W H F T × E G T × E I T × E 1 st F + ˙ G 1 st I = 1 st F 1 st G 1 st I
19 1 2 3 4 5 7 6 dvhvadd K HL W H G T × E I T × E G + ˙ I = 1 st G 1 st I 2 nd G ˙ 2 nd I
20 19 3adantr1 K HL W H F T × E G T × E I T × E G + ˙ I = 1 st G 1 st I 2 nd G ˙ 2 nd I
21 20 fveq2d K HL W H F T × E G T × E I T × E 1 st G + ˙ I = 1 st 1 st G 1 st I 2 nd G ˙ 2 nd I
22 fvex 1 st I V
23 13 22 coex 1 st G 1 st I V
24 ovex 2 nd G ˙ 2 nd I V
25 23 24 op1st 1 st 1 st G 1 st I 2 nd G ˙ 2 nd I = 1 st G 1 st I
26 21 25 eqtrdi K HL W H F T × E G T × E I T × E 1 st G + ˙ I = 1 st G 1 st I
27 26 coeq2d K HL W H F T × E G T × E I T × E 1 st F 1 st G + ˙ I = 1 st F 1 st G 1 st I
28 8 18 27 3eqtr4a K HL W H F T × E G T × E I T × E 1 st F + ˙ G 1 st I = 1 st F 1 st G + ˙ I
29 xp2nd F T × E 2 nd F E
30 xp2nd G T × E 2 nd G E
31 xp2nd I T × E 2 nd I E
32 29 30 31 3anim123i F T × E G T × E I T × E 2 nd F E 2 nd G E 2 nd I E
33 eqid EDRing K W = EDRing K W
34 1 33 4 5 dvhsca K HL W H D = EDRing K W
35 1 33 erngdv K HL W H EDRing K W DivRing
36 34 35 eqeltrd K HL W H D DivRing
37 drnggrp D DivRing D Grp
38 36 37 syl K HL W H D Grp
39 38 adantr K HL W H 2 nd F E 2 nd G E 2 nd I E D Grp
40 simpr1 K HL W H 2 nd F E 2 nd G E 2 nd I E 2 nd F E
41 eqid Base D = Base D
42 1 3 4 5 41 dvhbase K HL W H Base D = E
43 42 adantr K HL W H 2 nd F E 2 nd G E 2 nd I E Base D = E
44 40 43 eleqtrrd K HL W H 2 nd F E 2 nd G E 2 nd I E 2 nd F Base D
45 simpr2 K HL W H 2 nd F E 2 nd G E 2 nd I E 2 nd G E
46 45 43 eleqtrrd K HL W H 2 nd F E 2 nd G E 2 nd I E 2 nd G Base D
47 simpr3 K HL W H 2 nd F E 2 nd G E 2 nd I E 2 nd I E
48 47 43 eleqtrrd K HL W H 2 nd F E 2 nd G E 2 nd I E 2 nd I Base D
49 41 6 grpass D Grp 2 nd F Base D 2 nd G Base D 2 nd I Base D 2 nd F ˙ 2 nd G ˙ 2 nd I = 2 nd F ˙ 2 nd G ˙ 2 nd I
50 39 44 46 48 49 syl13anc K HL W H 2 nd F E 2 nd G E 2 nd I E 2 nd F ˙ 2 nd G ˙ 2 nd I = 2 nd F ˙ 2 nd G ˙ 2 nd I
51 32 50 sylan2 K HL W H F T × E G T × E I T × E 2 nd F ˙ 2 nd G ˙ 2 nd I = 2 nd F ˙ 2 nd G ˙ 2 nd I
52 10 fveq2d K HL W H F T × E G T × E I T × E 2 nd F + ˙ G = 2 nd 1 st F 1 st G 2 nd F ˙ 2 nd G
53 14 15 op2nd 2 nd 1 st F 1 st G 2 nd F ˙ 2 nd G = 2 nd F ˙ 2 nd G
54 52 53 eqtrdi K HL W H F T × E G T × E I T × E 2 nd F + ˙ G = 2 nd F ˙ 2 nd G
55 54 oveq1d K HL W H F T × E G T × E I T × E 2 nd F + ˙ G ˙ 2 nd I = 2 nd F ˙ 2 nd G ˙ 2 nd I
56 20 fveq2d K HL W H F T × E G T × E I T × E 2 nd G + ˙ I = 2 nd 1 st G 1 st I 2 nd G ˙ 2 nd I
57 23 24 op2nd 2 nd 1 st G 1 st I 2 nd G ˙ 2 nd I = 2 nd G ˙ 2 nd I
58 56 57 eqtrdi K HL W H F T × E G T × E I T × E 2 nd G + ˙ I = 2 nd G ˙ 2 nd I
59 58 oveq2d K HL W H F T × E G T × E I T × E 2 nd F ˙ 2 nd G + ˙ I = 2 nd F ˙ 2 nd G ˙ 2 nd I
60 51 55 59 3eqtr4d K HL W H F T × E G T × E I T × E 2 nd F + ˙ G ˙ 2 nd I = 2 nd F ˙ 2 nd G + ˙ I
61 28 60 opeq12d K HL W H F T × E G T × E I T × E 1 st F + ˙ G 1 st I 2 nd F + ˙ G ˙ 2 nd I = 1 st F 1 st G + ˙ I 2 nd F ˙ 2 nd G + ˙ I
62 simpl K HL W H F T × E G T × E I T × E K HL W H
63 1 2 3 4 5 6 7 dvhvaddcl K HL W H F T × E G T × E F + ˙ G T × E
64 63 3adantr3 K HL W H F T × E G T × E I T × E F + ˙ G T × E
65 simpr3 K HL W H F T × E G T × E I T × E I T × E
66 1 2 3 4 5 7 6 dvhvadd K HL W H F + ˙ G T × E I T × E F + ˙ G + ˙ I = 1 st F + ˙ G 1 st I 2 nd F + ˙ G ˙ 2 nd I
67 62 64 65 66 syl12anc K HL W H F T × E G T × E I T × E F + ˙ G + ˙ I = 1 st F + ˙ G 1 st I 2 nd F + ˙ G ˙ 2 nd I
68 simpr1 K HL W H F T × E G T × E I T × E F T × E
69 1 2 3 4 5 6 7 dvhvaddcl K HL W H G T × E I T × E G + ˙ I T × E
70 69 3adantr1 K HL W H F T × E G T × E I T × E G + ˙ I T × E
71 1 2 3 4 5 7 6 dvhvadd K HL W H F T × E G + ˙ I T × E F + ˙ G + ˙ I = 1 st F 1 st G + ˙ I 2 nd F ˙ 2 nd G + ˙ I
72 62 68 70 71 syl12anc K HL W H F T × E G T × E I T × E F + ˙ G + ˙ I = 1 st F 1 st G + ˙ I 2 nd F ˙ 2 nd G + ˙ I
73 61 67 72 3eqtr4d K HL W H F T × E G T × E I T × E F + ˙ G + ˙ I = F + ˙ G + ˙ I