Metamath Proof Explorer


Theorem dvhvaddass

Description: Associativity of vector sum. (Contributed by NM, 31-Oct-2013)

Ref Expression
Hypotheses dvhvaddcl.h H=LHypK
dvhvaddcl.t T=LTrnKW
dvhvaddcl.e E=TEndoKW
dvhvaddcl.u U=DVecHKW
dvhvaddcl.d D=ScalarU
dvhvaddcl.p ˙=+D
dvhvaddcl.a +˙=+U
Assertion dvhvaddass KHLWHFT×EGT×EIT×EF+˙G+˙I=F+˙G+˙I

Proof

Step Hyp Ref Expression
1 dvhvaddcl.h H=LHypK
2 dvhvaddcl.t T=LTrnKW
3 dvhvaddcl.e E=TEndoKW
4 dvhvaddcl.u U=DVecHKW
5 dvhvaddcl.d D=ScalarU
6 dvhvaddcl.p ˙=+D
7 dvhvaddcl.a +˙=+U
8 coass 1stF1stG1stI=1stF1stG1stI
9 1 2 3 4 5 7 6 dvhvadd KHLWHFT×EGT×EF+˙G=1stF1stG2ndF˙2ndG
10 9 3adantr3 KHLWHFT×EGT×EIT×EF+˙G=1stF1stG2ndF˙2ndG
11 10 fveq2d KHLWHFT×EGT×EIT×E1stF+˙G=1st1stF1stG2ndF˙2ndG
12 fvex 1stFV
13 fvex 1stGV
14 12 13 coex 1stF1stGV
15 ovex 2ndF˙2ndGV
16 14 15 op1st 1st1stF1stG2ndF˙2ndG=1stF1stG
17 11 16 eqtrdi KHLWHFT×EGT×EIT×E1stF+˙G=1stF1stG
18 17 coeq1d KHLWHFT×EGT×EIT×E1stF+˙G1stI=1stF1stG1stI
19 1 2 3 4 5 7 6 dvhvadd KHLWHGT×EIT×EG+˙I=1stG1stI2ndG˙2ndI
20 19 3adantr1 KHLWHFT×EGT×EIT×EG+˙I=1stG1stI2ndG˙2ndI
21 20 fveq2d KHLWHFT×EGT×EIT×E1stG+˙I=1st1stG1stI2ndG˙2ndI
22 fvex 1stIV
23 13 22 coex 1stG1stIV
24 ovex 2ndG˙2ndIV
25 23 24 op1st 1st1stG1stI2ndG˙2ndI=1stG1stI
26 21 25 eqtrdi KHLWHFT×EGT×EIT×E1stG+˙I=1stG1stI
27 26 coeq2d KHLWHFT×EGT×EIT×E1stF1stG+˙I=1stF1stG1stI
28 8 18 27 3eqtr4a KHLWHFT×EGT×EIT×E1stF+˙G1stI=1stF1stG+˙I
29 xp2nd FT×E2ndFE
30 xp2nd GT×E2ndGE
31 xp2nd IT×E2ndIE
32 29 30 31 3anim123i FT×EGT×EIT×E2ndFE2ndGE2ndIE
33 eqid EDRingKW=EDRingKW
34 1 33 4 5 dvhsca KHLWHD=EDRingKW
35 1 33 erngdv KHLWHEDRingKWDivRing
36 34 35 eqeltrd KHLWHDDivRing
37 drnggrp DDivRingDGrp
38 36 37 syl KHLWHDGrp
39 38 adantr KHLWH2ndFE2ndGE2ndIEDGrp
40 simpr1 KHLWH2ndFE2ndGE2ndIE2ndFE
41 eqid BaseD=BaseD
42 1 3 4 5 41 dvhbase KHLWHBaseD=E
43 42 adantr KHLWH2ndFE2ndGE2ndIEBaseD=E
44 40 43 eleqtrrd KHLWH2ndFE2ndGE2ndIE2ndFBaseD
45 simpr2 KHLWH2ndFE2ndGE2ndIE2ndGE
46 45 43 eleqtrrd KHLWH2ndFE2ndGE2ndIE2ndGBaseD
47 simpr3 KHLWH2ndFE2ndGE2ndIE2ndIE
48 47 43 eleqtrrd KHLWH2ndFE2ndGE2ndIE2ndIBaseD
49 41 6 grpass DGrp2ndFBaseD2ndGBaseD2ndIBaseD2ndF˙2ndG˙2ndI=2ndF˙2ndG˙2ndI
50 39 44 46 48 49 syl13anc KHLWH2ndFE2ndGE2ndIE2ndF˙2ndG˙2ndI=2ndF˙2ndG˙2ndI
51 32 50 sylan2 KHLWHFT×EGT×EIT×E2ndF˙2ndG˙2ndI=2ndF˙2ndG˙2ndI
52 10 fveq2d KHLWHFT×EGT×EIT×E2ndF+˙G=2nd1stF1stG2ndF˙2ndG
53 14 15 op2nd 2nd1stF1stG2ndF˙2ndG=2ndF˙2ndG
54 52 53 eqtrdi KHLWHFT×EGT×EIT×E2ndF+˙G=2ndF˙2ndG
55 54 oveq1d KHLWHFT×EGT×EIT×E2ndF+˙G˙2ndI=2ndF˙2ndG˙2ndI
56 20 fveq2d KHLWHFT×EGT×EIT×E2ndG+˙I=2nd1stG1stI2ndG˙2ndI
57 23 24 op2nd 2nd1stG1stI2ndG˙2ndI=2ndG˙2ndI
58 56 57 eqtrdi KHLWHFT×EGT×EIT×E2ndG+˙I=2ndG˙2ndI
59 58 oveq2d KHLWHFT×EGT×EIT×E2ndF˙2ndG+˙I=2ndF˙2ndG˙2ndI
60 51 55 59 3eqtr4d KHLWHFT×EGT×EIT×E2ndF+˙G˙2ndI=2ndF˙2ndG+˙I
61 28 60 opeq12d KHLWHFT×EGT×EIT×E1stF+˙G1stI2ndF+˙G˙2ndI=1stF1stG+˙I2ndF˙2ndG+˙I
62 simpl KHLWHFT×EGT×EIT×EKHLWH
63 1 2 3 4 5 6 7 dvhvaddcl KHLWHFT×EGT×EF+˙GT×E
64 63 3adantr3 KHLWHFT×EGT×EIT×EF+˙GT×E
65 simpr3 KHLWHFT×EGT×EIT×EIT×E
66 1 2 3 4 5 7 6 dvhvadd KHLWHF+˙GT×EIT×EF+˙G+˙I=1stF+˙G1stI2ndF+˙G˙2ndI
67 62 64 65 66 syl12anc KHLWHFT×EGT×EIT×EF+˙G+˙I=1stF+˙G1stI2ndF+˙G˙2ndI
68 simpr1 KHLWHFT×EGT×EIT×EFT×E
69 1 2 3 4 5 6 7 dvhvaddcl KHLWHGT×EIT×EG+˙IT×E
70 69 3adantr1 KHLWHFT×EGT×EIT×EG+˙IT×E
71 1 2 3 4 5 7 6 dvhvadd KHLWHFT×EG+˙IT×EF+˙G+˙I=1stF1stG+˙I2ndF˙2ndG+˙I
72 62 68 70 71 syl12anc KHLWHFT×EGT×EIT×EF+˙G+˙I=1stF1stG+˙I2ndF˙2ndG+˙I
73 61 67 72 3eqtr4d KHLWHFT×EGT×EIT×EF+˙G+˙I=F+˙G+˙I