Description: Two closed dyadic rational intervals are either in a subset relationship or are almost disjoint (the interiors are disjoint). (Contributed by Mario Carneiro, 26-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | dyadmbl.1 | |
|
Assertion | dyaddisj | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dyadmbl.1 | |
|
2 | 1 | dyadf | |
3 | ffn | |
|
4 | ovelrn | |
|
5 | ovelrn | |
|
6 | 4 5 | anbi12d | |
7 | 2 3 6 | mp2b | |
8 | reeanv | |
|
9 | 7 8 | bitr4i | |
10 | reeanv | |
|
11 | nn0re | |
|
12 | 11 | ad2antrl | |
13 | nn0re | |
|
14 | 13 | ad2antll | |
15 | 1 | dyaddisjlem | |
16 | ancom | |
|
17 | ancom | |
|
18 | 16 17 | anbi12i | |
19 | 1 | dyaddisjlem | |
20 | 18 19 | sylanb | |
21 | orcom | |
|
22 | incom | |
|
23 | 22 | eqeq1i | |
24 | 21 23 | orbi12i | |
25 | df-3or | |
|
26 | df-3or | |
|
27 | 24 25 26 | 3bitr4i | |
28 | 20 27 | sylib | |
29 | 12 14 15 28 | lecasei | |
30 | simpl | |
|
31 | 30 | fveq2d | |
32 | simpr | |
|
33 | 32 | fveq2d | |
34 | 31 33 | sseq12d | |
35 | 33 31 | sseq12d | |
36 | 30 | fveq2d | |
37 | 32 | fveq2d | |
38 | 36 37 | ineq12d | |
39 | 38 | eqeq1d | |
40 | 34 35 39 | 3orbi123d | |
41 | 29 40 | syl5ibrcom | |
42 | 41 | rexlimdvva | |
43 | 10 42 | biimtrrid | |
44 | 43 | rexlimivv | |
45 | 9 44 | sylbi | |