Metamath Proof Explorer


Theorem dyaddisj

Description: Two closed dyadic rational intervals are either in a subset relationship or are almost disjoint (the interiors are disjoint). (Contributed by Mario Carneiro, 26-Mar-2015)

Ref Expression
Hypothesis dyadmbl.1 F = x , y 0 x 2 y x + 1 2 y
Assertion dyaddisj A ran F B ran F . A . B . B . A . A . B =

Proof

Step Hyp Ref Expression
1 dyadmbl.1 F = x , y 0 x 2 y x + 1 2 y
2 1 dyadf F : × 0 2
3 ffn F : × 0 2 F Fn × 0
4 ovelrn F Fn × 0 A ran F a c 0 A = a F c
5 ovelrn F Fn × 0 B ran F b d 0 B = b F d
6 4 5 anbi12d F Fn × 0 A ran F B ran F a c 0 A = a F c b d 0 B = b F d
7 2 3 6 mp2b A ran F B ran F a c 0 A = a F c b d 0 B = b F d
8 reeanv a b c 0 A = a F c d 0 B = b F d a c 0 A = a F c b d 0 B = b F d
9 7 8 bitr4i A ran F B ran F a b c 0 A = a F c d 0 B = b F d
10 reeanv c 0 d 0 A = a F c B = b F d c 0 A = a F c d 0 B = b F d
11 nn0re c 0 c
12 11 ad2antrl a b c 0 d 0 c
13 nn0re d 0 d
14 13 ad2antll a b c 0 d 0 d
15 1 dyaddisjlem a b c 0 d 0 c d . a F c . b F d . b F d . a F c . a F c . b F d =
16 ancom a b b a
17 ancom c 0 d 0 d 0 c 0
18 16 17 anbi12i a b c 0 d 0 b a d 0 c 0
19 1 dyaddisjlem b a d 0 c 0 d c . b F d . a F c . a F c . b F d . b F d . a F c =
20 18 19 sylanb a b c 0 d 0 d c . b F d . a F c . a F c . b F d . b F d . a F c =
21 orcom . b F d . a F c . a F c . b F d . a F c . b F d . b F d . a F c
22 incom . b F d . a F c = . a F c . b F d
23 22 eqeq1i . b F d . a F c = . a F c . b F d =
24 21 23 orbi12i . b F d . a F c . a F c . b F d . b F d . a F c = . a F c . b F d . b F d . a F c . a F c . b F d =
25 df-3or . b F d . a F c . a F c . b F d . b F d . a F c = . b F d . a F c . a F c . b F d . b F d . a F c =
26 df-3or . a F c . b F d . b F d . a F c . a F c . b F d = . a F c . b F d . b F d . a F c . a F c . b F d =
27 24 25 26 3bitr4i . b F d . a F c . a F c . b F d . b F d . a F c = . a F c . b F d . b F d . a F c . a F c . b F d =
28 20 27 sylib a b c 0 d 0 d c . a F c . b F d . b F d . a F c . a F c . b F d =
29 12 14 15 28 lecasei a b c 0 d 0 . a F c . b F d . b F d . a F c . a F c . b F d =
30 simpl A = a F c B = b F d A = a F c
31 30 fveq2d A = a F c B = b F d . A = . a F c
32 simpr A = a F c B = b F d B = b F d
33 32 fveq2d A = a F c B = b F d . B = . b F d
34 31 33 sseq12d A = a F c B = b F d . A . B . a F c . b F d
35 33 31 sseq12d A = a F c B = b F d . B . A . b F d . a F c
36 30 fveq2d A = a F c B = b F d . A = . a F c
37 32 fveq2d A = a F c B = b F d . B = . b F d
38 36 37 ineq12d A = a F c B = b F d . A . B = . a F c . b F d
39 38 eqeq1d A = a F c B = b F d . A . B = . a F c . b F d =
40 34 35 39 3orbi123d A = a F c B = b F d . A . B . B . A . A . B = . a F c . b F d . b F d . a F c . a F c . b F d =
41 29 40 syl5ibrcom a b c 0 d 0 A = a F c B = b F d . A . B . B . A . A . B =
42 41 rexlimdvva a b c 0 d 0 A = a F c B = b F d . A . B . B . A . A . B =
43 10 42 syl5bir a b c 0 A = a F c d 0 B = b F d . A . B . B . A . A . B =
44 43 rexlimivv a b c 0 A = a F c d 0 B = b F d . A . B . B . A . A . B =
45 9 44 sylbi A ran F B ran F . A . B . B . A . A . B =