Metamath Proof Explorer


Theorem efexple

Description: Convert a bound on a power to a bound on the exponent. (Contributed by Mario Carneiro, 11-Mar-2014)

Ref Expression
Assertion efexple A1<ANB+ANBNlogBlogA

Proof

Step Hyp Ref Expression
1 simpl A1<AA
2 0lt1 0<1
3 0re 0
4 1re 1
5 lttr 01A0<11<A0<A
6 3 4 5 mp3an12 A0<11<A0<A
7 2 6 mpani A1<A0<A
8 7 imp A1<A0<A
9 1 8 elrpd A1<AA+
10 9 3ad2ant1 A1<ANB+A+
11 simp2 A1<ANB+N
12 reexplog A+NAN=eNlogA
13 10 11 12 syl2anc A1<ANB+AN=eNlogA
14 reeflog B+elogB=B
15 14 3ad2ant3 A1<ANB+elogB=B
16 15 eqcomd A1<ANB+B=elogB
17 13 16 breq12d A1<ANB+ANBeNlogAelogB
18 zre NN
19 18 3ad2ant2 A1<ANB+N
20 rplogcl A1<AlogA+
21 20 3ad2ant1 A1<ANB+logA+
22 21 rpred A1<ANB+logA
23 19 22 remulcld A1<ANB+NlogA
24 relogcl B+logB
25 24 3ad2ant3 A1<ANB+logB
26 efle NlogAlogBNlogAlogBeNlogAelogB
27 23 25 26 syl2anc A1<ANB+NlogAlogBeNlogAelogB
28 19 25 21 lemuldivd A1<ANB+NlogAlogBNlogBlogA
29 25 21 rerpdivcld A1<ANB+logBlogA
30 flge logBlogANNlogBlogANlogBlogA
31 29 11 30 syl2anc A1<ANB+NlogBlogANlogBlogA
32 28 31 bitrd A1<ANB+NlogAlogBNlogBlogA
33 17 27 32 3bitr2d A1<ANB+ANBNlogBlogA