Metamath Proof Explorer


Theorem eldioph4b

Description: Membership in Dioph expressed using a quantified union to add witness variables instead of a restriction to remove them. (Contributed by Stefan O'Rear, 16-Oct-2014)

Ref Expression
Hypotheses eldioph4b.a W V
eldioph4b.b ¬ W Fin
eldioph4b.c W =
Assertion eldioph4b S Dioph N N 0 p mzPoly W 1 N S = t 0 1 N | w 0 W p t w = 0

Proof

Step Hyp Ref Expression
1 eldioph4b.a W V
2 eldioph4b.b ¬ W Fin
3 eldioph4b.c W =
4 eldiophelnn0 S Dioph N N 0
5 ovex 1 N V
6 1 5 unex W 1 N V
7 6 jctr N 0 N 0 W 1 N V
8 2 intnanr ¬ W Fin 1 N Fin
9 unfir W 1 N Fin W Fin 1 N Fin
10 8 9 mto ¬ W 1 N Fin
11 ssun2 1 N W 1 N
12 10 11 pm3.2i ¬ W 1 N Fin 1 N W 1 N
13 eldioph2b N 0 W 1 N V ¬ W 1 N Fin 1 N W 1 N S Dioph N p mzPoly W 1 N S = t | u 0 W 1 N t = u 1 N p u = 0
14 7 12 13 sylancl N 0 S Dioph N p mzPoly W 1 N S = t | u 0 W 1 N t = u 1 N p u = 0
15 elmapssres u 0 W 1 N 1 N W 1 N u 1 N 0 1 N
16 11 15 mpan2 u 0 W 1 N u 1 N 0 1 N
17 16 adantr u 0 W 1 N p u = 0 u 1 N 0 1 N
18 ssun1 W W 1 N
19 elmapssres u 0 W 1 N W W 1 N u W 0 W
20 18 19 mpan2 u 0 W 1 N u W 0 W
21 20 adantr u 0 W 1 N p u = 0 u W 0 W
22 uncom u 1 N u W = u W u 1 N
23 resundi u W 1 N = u W u 1 N
24 22 23 eqtr4i u 1 N u W = u W 1 N
25 elmapi u 0 W 1 N u : W 1 N 0
26 ffn u : W 1 N 0 u Fn W 1 N
27 fnresdm u Fn W 1 N u W 1 N = u
28 25 26 27 3syl u 0 W 1 N u W 1 N = u
29 24 28 syl5eq u 0 W 1 N u 1 N u W = u
30 29 fveqeq2d u 0 W 1 N p u 1 N u W = 0 p u = 0
31 30 biimpar u 0 W 1 N p u = 0 p u 1 N u W = 0
32 uneq2 w = u W u 1 N w = u 1 N u W
33 32 fveqeq2d w = u W p u 1 N w = 0 p u 1 N u W = 0
34 33 rspcev u W 0 W p u 1 N u W = 0 w 0 W p u 1 N w = 0
35 21 31 34 syl2anc u 0 W 1 N p u = 0 w 0 W p u 1 N w = 0
36 17 35 jca u 0 W 1 N p u = 0 u 1 N 0 1 N w 0 W p u 1 N w = 0
37 eleq1 t = u 1 N t 0 1 N u 1 N 0 1 N
38 uneq1 t = u 1 N t w = u 1 N w
39 38 fveqeq2d t = u 1 N p t w = 0 p u 1 N w = 0
40 39 rexbidv t = u 1 N w 0 W p t w = 0 w 0 W p u 1 N w = 0
41 37 40 anbi12d t = u 1 N t 0 1 N w 0 W p t w = 0 u 1 N 0 1 N w 0 W p u 1 N w = 0
42 36 41 syl5ibrcom u 0 W 1 N p u = 0 t = u 1 N t 0 1 N w 0 W p t w = 0
43 42 expimpd u 0 W 1 N p u = 0 t = u 1 N t 0 1 N w 0 W p t w = 0
44 43 ancomsd u 0 W 1 N t = u 1 N p u = 0 t 0 1 N w 0 W p t w = 0
45 44 rexlimiv u 0 W 1 N t = u 1 N p u = 0 t 0 1 N w 0 W p t w = 0
46 uncom t w = w t
47 fz1ssnn 1 N
48 sslin 1 N W 1 N W
49 47 48 ax-mp W 1 N W
50 49 3 sseqtri W 1 N
51 ss0 W 1 N W 1 N =
52 50 51 ax-mp W 1 N =
53 52 reseq2i w W 1 N = w
54 res0 w =
55 53 54 eqtri w W 1 N =
56 52 reseq2i t W 1 N = t
57 res0 t =
58 56 57 eqtri t W 1 N =
59 55 58 eqtr4i w W 1 N = t W 1 N
60 elmapresaun w 0 W t 0 1 N w W 1 N = t W 1 N w t 0 W 1 N
61 59 60 mp3an3 w 0 W t 0 1 N w t 0 W 1 N
62 61 ancoms t 0 1 N w 0 W w t 0 W 1 N
63 46 62 eqeltrid t 0 1 N w 0 W t w 0 W 1 N
64 63 adantr t 0 1 N w 0 W p t w = 0 t w 0 W 1 N
65 46 reseq1i t w 1 N = w t 1 N
66 elmapresaunres2 w 0 W t 0 1 N w W 1 N = t W 1 N w t 1 N = t
67 59 66 mp3an3 w 0 W t 0 1 N w t 1 N = t
68 67 ancoms t 0 1 N w 0 W w t 1 N = t
69 65 68 eqtr2id t 0 1 N w 0 W t = t w 1 N
70 69 adantr t 0 1 N w 0 W p t w = 0 t = t w 1 N
71 simpr t 0 1 N w 0 W p t w = 0 p t w = 0
72 reseq1 u = t w u 1 N = t w 1 N
73 72 eqeq2d u = t w t = u 1 N t = t w 1 N
74 fveqeq2 u = t w p u = 0 p t w = 0
75 73 74 anbi12d u = t w t = u 1 N p u = 0 t = t w 1 N p t w = 0
76 75 rspcev t w 0 W 1 N t = t w 1 N p t w = 0 u 0 W 1 N t = u 1 N p u = 0
77 64 70 71 76 syl12anc t 0 1 N w 0 W p t w = 0 u 0 W 1 N t = u 1 N p u = 0
78 77 r19.29an t 0 1 N w 0 W p t w = 0 u 0 W 1 N t = u 1 N p u = 0
79 45 78 impbii u 0 W 1 N t = u 1 N p u = 0 t 0 1 N w 0 W p t w = 0
80 79 abbii t | u 0 W 1 N t = u 1 N p u = 0 = t | t 0 1 N w 0 W p t w = 0
81 df-rab t 0 1 N | w 0 W p t w = 0 = t | t 0 1 N w 0 W p t w = 0
82 80 81 eqtr4i t | u 0 W 1 N t = u 1 N p u = 0 = t 0 1 N | w 0 W p t w = 0
83 82 eqeq2i S = t | u 0 W 1 N t = u 1 N p u = 0 S = t 0 1 N | w 0 W p t w = 0
84 83 rexbii p mzPoly W 1 N S = t | u 0 W 1 N t = u 1 N p u = 0 p mzPoly W 1 N S = t 0 1 N | w 0 W p t w = 0
85 14 84 bitrdi N 0 S Dioph N p mzPoly W 1 N S = t 0 1 N | w 0 W p t w = 0
86 4 85 biadanii S Dioph N N 0 p mzPoly W 1 N S = t 0 1 N | w 0 W p t w = 0