Metamath Proof Explorer


Theorem eldioph4b

Description: Membership in Dioph expressed using a quantified union to add witness variables instead of a restriction to remove them. (Contributed by Stefan O'Rear, 16-Oct-2014)

Ref Expression
Hypotheses eldioph4b.a WV
eldioph4b.b ¬WFin
eldioph4b.c W=
Assertion eldioph4b SDiophNN0pmzPolyW1NS=t01N|w0Wptw=0

Proof

Step Hyp Ref Expression
1 eldioph4b.a WV
2 eldioph4b.b ¬WFin
3 eldioph4b.c W=
4 eldiophelnn0 SDiophNN0
5 ovex 1NV
6 1 5 unex W1NV
7 6 jctr N0N0W1NV
8 2 intnanr ¬WFin1NFin
9 unfir W1NFinWFin1NFin
10 8 9 mto ¬W1NFin
11 ssun2 1NW1N
12 10 11 pm3.2i ¬W1NFin1NW1N
13 eldioph2b N0W1NV¬W1NFin1NW1NSDiophNpmzPolyW1NS=t|u0W1Nt=u1Npu=0
14 7 12 13 sylancl N0SDiophNpmzPolyW1NS=t|u0W1Nt=u1Npu=0
15 elmapssres u0W1N1NW1Nu1N01N
16 11 15 mpan2 u0W1Nu1N01N
17 16 adantr u0W1Npu=0u1N01N
18 ssun1 WW1N
19 elmapssres u0W1NWW1NuW0W
20 18 19 mpan2 u0W1NuW0W
21 20 adantr u0W1Npu=0uW0W
22 uncom u1NuW=uWu1N
23 resundi uW1N=uWu1N
24 22 23 eqtr4i u1NuW=uW1N
25 elmapi u0W1Nu:W1N0
26 ffn u:W1N0uFnW1N
27 fnresdm uFnW1NuW1N=u
28 25 26 27 3syl u0W1NuW1N=u
29 24 28 eqtrid u0W1Nu1NuW=u
30 29 fveqeq2d u0W1Npu1NuW=0pu=0
31 30 biimpar u0W1Npu=0pu1NuW=0
32 uneq2 w=uWu1Nw=u1NuW
33 32 fveqeq2d w=uWpu1Nw=0pu1NuW=0
34 33 rspcev uW0Wpu1NuW=0w0Wpu1Nw=0
35 21 31 34 syl2anc u0W1Npu=0w0Wpu1Nw=0
36 17 35 jca u0W1Npu=0u1N01Nw0Wpu1Nw=0
37 eleq1 t=u1Nt01Nu1N01N
38 uneq1 t=u1Ntw=u1Nw
39 38 fveqeq2d t=u1Nptw=0pu1Nw=0
40 39 rexbidv t=u1Nw0Wptw=0w0Wpu1Nw=0
41 37 40 anbi12d t=u1Nt01Nw0Wptw=0u1N01Nw0Wpu1Nw=0
42 36 41 syl5ibrcom u0W1Npu=0t=u1Nt01Nw0Wptw=0
43 42 expimpd u0W1Npu=0t=u1Nt01Nw0Wptw=0
44 43 ancomsd u0W1Nt=u1Npu=0t01Nw0Wptw=0
45 44 rexlimiv u0W1Nt=u1Npu=0t01Nw0Wptw=0
46 uncom tw=wt
47 fz1ssnn 1N
48 sslin 1NW1NW
49 47 48 ax-mp W1NW
50 49 3 sseqtri W1N
51 ss0 W1NW1N=
52 50 51 ax-mp W1N=
53 52 reseq2i wW1N=w
54 res0 w=
55 53 54 eqtri wW1N=
56 52 reseq2i tW1N=t
57 res0 t=
58 56 57 eqtri tW1N=
59 55 58 eqtr4i wW1N=tW1N
60 elmapresaun w0Wt01NwW1N=tW1Nwt0W1N
61 59 60 mp3an3 w0Wt01Nwt0W1N
62 61 ancoms t01Nw0Wwt0W1N
63 46 62 eqeltrid t01Nw0Wtw0W1N
64 63 adantr t01Nw0Wptw=0tw0W1N
65 46 reseq1i tw1N=wt1N
66 elmapresaunres2 w0Wt01NwW1N=tW1Nwt1N=t
67 59 66 mp3an3 w0Wt01Nwt1N=t
68 67 ancoms t01Nw0Wwt1N=t
69 65 68 eqtr2id t01Nw0Wt=tw1N
70 69 adantr t01Nw0Wptw=0t=tw1N
71 simpr t01Nw0Wptw=0ptw=0
72 reseq1 u=twu1N=tw1N
73 72 eqeq2d u=twt=u1Nt=tw1N
74 fveqeq2 u=twpu=0ptw=0
75 73 74 anbi12d u=twt=u1Npu=0t=tw1Nptw=0
76 75 rspcev tw0W1Nt=tw1Nptw=0u0W1Nt=u1Npu=0
77 64 70 71 76 syl12anc t01Nw0Wptw=0u0W1Nt=u1Npu=0
78 77 r19.29an t01Nw0Wptw=0u0W1Nt=u1Npu=0
79 45 78 impbii u0W1Nt=u1Npu=0t01Nw0Wptw=0
80 79 abbii t|u0W1Nt=u1Npu=0=t|t01Nw0Wptw=0
81 df-rab t01N|w0Wptw=0=t|t01Nw0Wptw=0
82 80 81 eqtr4i t|u0W1Nt=u1Npu=0=t01N|w0Wptw=0
83 82 eqeq2i S=t|u0W1Nt=u1Npu=0S=t01N|w0Wptw=0
84 83 rexbii pmzPolyW1NS=t|u0W1Nt=u1Npu=0pmzPolyW1NS=t01N|w0Wptw=0
85 14 84 bitrdi N0SDiophNpmzPolyW1NS=t01N|w0Wptw=0
86 4 85 biadanii SDiophNN0pmzPolyW1NS=t01N|w0Wptw=0