| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldioph4b.a |
|
| 2 |
|
eldioph4b.b |
|
| 3 |
|
eldioph4b.c |
|
| 4 |
|
eldiophelnn0 |
|
| 5 |
|
ovex |
|
| 6 |
1 5
|
unex |
|
| 7 |
6
|
jctr |
|
| 8 |
2
|
intnanr |
|
| 9 |
|
unfir |
|
| 10 |
8 9
|
mto |
|
| 11 |
|
ssun2 |
|
| 12 |
10 11
|
pm3.2i |
|
| 13 |
|
eldioph2b |
|
| 14 |
7 12 13
|
sylancl |
|
| 15 |
|
elmapssres |
|
| 16 |
11 15
|
mpan2 |
|
| 17 |
16
|
adantr |
|
| 18 |
|
ssun1 |
|
| 19 |
|
elmapssres |
|
| 20 |
18 19
|
mpan2 |
|
| 21 |
20
|
adantr |
|
| 22 |
|
uncom |
|
| 23 |
|
resundi |
|
| 24 |
22 23
|
eqtr4i |
|
| 25 |
|
elmapi |
|
| 26 |
|
ffn |
|
| 27 |
|
fnresdm |
|
| 28 |
25 26 27
|
3syl |
|
| 29 |
24 28
|
eqtrid |
|
| 30 |
29
|
fveqeq2d |
|
| 31 |
30
|
biimpar |
|
| 32 |
|
uneq2 |
|
| 33 |
32
|
fveqeq2d |
|
| 34 |
33
|
rspcev |
|
| 35 |
21 31 34
|
syl2anc |
|
| 36 |
17 35
|
jca |
|
| 37 |
|
eleq1 |
|
| 38 |
|
uneq1 |
|
| 39 |
38
|
fveqeq2d |
|
| 40 |
39
|
rexbidv |
|
| 41 |
37 40
|
anbi12d |
|
| 42 |
36 41
|
syl5ibrcom |
|
| 43 |
42
|
expimpd |
|
| 44 |
43
|
ancomsd |
|
| 45 |
44
|
rexlimiv |
|
| 46 |
|
uncom |
|
| 47 |
|
fz1ssnn |
|
| 48 |
|
sslin |
|
| 49 |
47 48
|
ax-mp |
|
| 50 |
49 3
|
sseqtri |
|
| 51 |
|
ss0 |
|
| 52 |
50 51
|
ax-mp |
|
| 53 |
52
|
reseq2i |
|
| 54 |
|
res0 |
|
| 55 |
53 54
|
eqtri |
|
| 56 |
52
|
reseq2i |
|
| 57 |
|
res0 |
|
| 58 |
56 57
|
eqtri |
|
| 59 |
55 58
|
eqtr4i |
|
| 60 |
|
elmapresaun |
|
| 61 |
59 60
|
mp3an3 |
|
| 62 |
61
|
ancoms |
|
| 63 |
46 62
|
eqeltrid |
|
| 64 |
63
|
adantr |
|
| 65 |
46
|
reseq1i |
|
| 66 |
|
elmapresaunres2 |
|
| 67 |
59 66
|
mp3an3 |
|
| 68 |
67
|
ancoms |
|
| 69 |
65 68
|
eqtr2id |
|
| 70 |
69
|
adantr |
|
| 71 |
|
simpr |
|
| 72 |
|
reseq1 |
|
| 73 |
72
|
eqeq2d |
|
| 74 |
|
fveqeq2 |
|
| 75 |
73 74
|
anbi12d |
|
| 76 |
75
|
rspcev |
|
| 77 |
64 70 71 76
|
syl12anc |
|
| 78 |
77
|
r19.29an |
|
| 79 |
45 78
|
impbii |
|
| 80 |
79
|
abbii |
|
| 81 |
|
df-rab |
|
| 82 |
80 81
|
eqtr4i |
|
| 83 |
82
|
eqeq2i |
|
| 84 |
83
|
rexbii |
|
| 85 |
14 84
|
bitrdi |
|
| 86 |
4 85
|
biadanii |
|