Metamath Proof Explorer


Theorem elicc3

Description: An equivalent membership condition for closed intervals. (Contributed by Jeff Hankins, 14-Jul-2009)

Ref Expression
Assertion elicc3 A*B*CABC*ABC=AA<CC<BC=B

Proof

Step Hyp Ref Expression
1 elicc1 A*B*CABC*ACCB
2 simp1 C*ACCBC*
3 2 a1i A*B*C*ACCBC*
4 xrletr A*C*B*ACCBAB
5 4 exp5o A*C*B*ACCBAB
6 5 com23 A*B*C*ACCBAB
7 6 imp5q A*B*C*ACCBAB
8 df-ne CA¬C=A
9 xrleltne A*C*ACA<CCA
10 9 biimprd A*C*ACCAA<C
11 8 10 biimtrrid A*C*AC¬C=AA<C
12 11 3adant3r3 A*C*ACCB¬C=AA<C
13 12 adantlr A*B*C*ACCB¬C=AA<C
14 eqcom C=BB=C
15 14 necon3bbii ¬C=BBC
16 xrleltne C*B*CBC<BBC
17 16 biimprd C*B*CBBCC<B
18 15 17 biimtrid C*B*CB¬C=BC<B
19 18 3exp C*B*CB¬C=BC<B
20 19 com12 B*C*CB¬C=BC<B
21 20 imp32 B*C*CB¬C=BC<B
22 21 3adantr2 B*C*ACCB¬C=BC<B
23 22 adantll A*B*C*ACCB¬C=BC<B
24 13 23 anim12d A*B*C*ACCB¬C=A¬C=BA<CC<B
25 24 ex A*B*C*ACCB¬C=A¬C=BA<CC<B
26 df-or C=AA<CC<BC=B¬C=AA<CC<BC=B
27 3orass C=AA<CC<BC=BC=AA<CC<BC=B
28 pm5.6 ¬C=A¬C=BA<CC<B¬C=AC=BA<CC<B
29 orcom C=BA<CC<BA<CC<BC=B
30 29 imbi2i ¬C=AC=BA<CC<B¬C=AA<CC<BC=B
31 28 30 bitri ¬C=A¬C=BA<CC<B¬C=AA<CC<BC=B
32 26 27 31 3bitr4ri ¬C=A¬C=BA<CC<BC=AA<CC<BC=B
33 25 32 imbitrdi A*B*C*ACCBC=AA<CC<BC=B
34 3 7 33 3jcad A*B*C*ACCBC*ABC=AA<CC<BC=B
35 simp1 C*ABC=AA<CC<BC=BC*
36 35 a1i A*B*C*ABC=AA<CC<BC=BC*
37 xrleid A*AA
38 37 ad3antrrr A*B*C*ABAA
39 breq2 C=AACAA
40 38 39 syl5ibrcom A*B*C*ABC=AAC
41 xrltle A*C*A<CAC
42 41 adantr A*C*ABA<CAC
43 42 adantllr A*B*C*ABA<CAC
44 43 adantrd A*B*C*ABA<CC<BAC
45 simpr A*B*C*ABAB
46 breq2 C=BACAB
47 45 46 syl5ibrcom A*B*C*ABC=BAC
48 40 44 47 3jaod A*B*C*ABC=AA<CC<BC=BAC
49 48 exp31 A*B*C*ABC=AA<CC<BC=BAC
50 49 3impd A*B*C*ABC=AA<CC<BC=BAC
51 breq1 C=ACBAB
52 45 51 syl5ibrcom A*B*C*ABC=ACB
53 xrltle C*B*C<BCB
54 53 ancoms B*C*C<BCB
55 54 adantld B*C*A<CC<BCB
56 55 adantll A*B*C*A<CC<BCB
57 56 adantr A*B*C*ABA<CC<BCB
58 xrleid B*BB
59 58 ad3antlr A*B*C*ABBB
60 breq1 C=BCBBB
61 59 60 syl5ibrcom A*B*C*ABC=BCB
62 52 57 61 3jaod A*B*C*ABC=AA<CC<BC=BCB
63 62 exp31 A*B*C*ABC=AA<CC<BC=BCB
64 63 3impd A*B*C*ABC=AA<CC<BC=BCB
65 36 50 64 3jcad A*B*C*ABC=AA<CC<BC=BC*ACCB
66 34 65 impbid A*B*C*ACCBC*ABC=AA<CC<BC=B
67 1 66 bitrd A*B*CABC*ABC=AA<CC<BC=B