Description: An equivalent membership condition for closed intervals. (Contributed by Jeff Hankins, 14-Jul-2009)
Ref | Expression | ||
---|---|---|---|
Assertion | elicc3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elicc1 | |
|
2 | simp1 | |
|
3 | 2 | a1i | |
4 | xrletr | |
|
5 | 4 | exp5o | |
6 | 5 | com23 | |
7 | 6 | imp5q | |
8 | df-ne | |
|
9 | xrleltne | |
|
10 | 9 | biimprd | |
11 | 8 10 | biimtrrid | |
12 | 11 | 3adant3r3 | |
13 | 12 | adantlr | |
14 | eqcom | |
|
15 | 14 | necon3bbii | |
16 | xrleltne | |
|
17 | 16 | biimprd | |
18 | 15 17 | biimtrid | |
19 | 18 | 3exp | |
20 | 19 | com12 | |
21 | 20 | imp32 | |
22 | 21 | 3adantr2 | |
23 | 22 | adantll | |
24 | 13 23 | anim12d | |
25 | 24 | ex | |
26 | df-or | |
|
27 | 3orass | |
|
28 | pm5.6 | |
|
29 | orcom | |
|
30 | 29 | imbi2i | |
31 | 28 30 | bitri | |
32 | 26 27 31 | 3bitr4ri | |
33 | 25 32 | imbitrdi | |
34 | 3 7 33 | 3jcad | |
35 | simp1 | |
|
36 | 35 | a1i | |
37 | xrleid | |
|
38 | 37 | ad3antrrr | |
39 | breq2 | |
|
40 | 38 39 | syl5ibrcom | |
41 | xrltle | |
|
42 | 41 | adantr | |
43 | 42 | adantllr | |
44 | 43 | adantrd | |
45 | simpr | |
|
46 | breq2 | |
|
47 | 45 46 | syl5ibrcom | |
48 | 40 44 47 | 3jaod | |
49 | 48 | exp31 | |
50 | 49 | 3impd | |
51 | breq1 | |
|
52 | 45 51 | syl5ibrcom | |
53 | xrltle | |
|
54 | 53 | ancoms | |
55 | 54 | adantld | |
56 | 55 | adantll | |
57 | 56 | adantr | |
58 | xrleid | |
|
59 | 58 | ad3antlr | |
60 | breq1 | |
|
61 | 59 60 | syl5ibrcom | |
62 | 52 57 61 | 3jaod | |
63 | 62 | exp31 | |
64 | 63 | 3impd | |
65 | 36 50 64 | 3jcad | |
66 | 34 65 | impbid | |
67 | 1 66 | bitrd | |