Metamath Proof Explorer


Theorem eqscut2

Description: Condition for equality to a surreal cut. (Contributed by Scott Fenton, 8-Aug-2024)

Ref Expression
Assertion eqscut2 LsRXNoL|sR=XLsXXsRyNoLsyysRbdayXbdayy

Proof

Step Hyp Ref Expression
1 eqscut LsRXNoL|sR=XLsXXsRbdayX=bdayxNo|LsxxsR
2 eqss bdayX=bdayxNo|LsxxsRbdayXbdayxNo|LsxxsRbdayxNo|LsxxsRbdayX
3 sneq x=Xx=X
4 3 breq2d x=XLsxLsX
5 3 breq1d x=XxsRXsR
6 4 5 anbi12d x=XLsxxsRLsXXsR
7 6 elrab3 XNoXxNo|LsxxsRLsXXsR
8 7 adantl LsRXNoXxNo|LsxxsRLsXXsR
9 8 biimpar LsRXNoLsXXsRXxNo|LsxxsR
10 bdayfn bdayFnNo
11 ssrab2 xNo|LsxxsRNo
12 fnfvima bdayFnNoxNo|LsxxsRNoXxNo|LsxxsRbdayXbdayxNo|LsxxsR
13 10 11 12 mp3an12 XxNo|LsxxsRbdayXbdayxNo|LsxxsR
14 intss1 bdayXbdayxNo|LsxxsRbdayxNo|LsxxsRbdayX
15 9 13 14 3syl LsRXNoLsXXsRbdayxNo|LsxxsRbdayX
16 15 biantrud LsRXNoLsXXsRbdayXbdayxNo|LsxxsRbdayXbdayxNo|LsxxsRbdayxNo|LsxxsRbdayX
17 ssint bdayXbdayxNo|LsxxsRzbdayxNo|LsxxsRbdayXz
18 fvelimab bdayFnNoxNo|LsxxsRNozbdayxNo|LsxxsRyxNo|LsxxsRbdayy=z
19 10 11 18 mp2an zbdayxNo|LsxxsRyxNo|LsxxsRbdayy=z
20 sneq x=yx=y
21 20 breq2d x=yLsxLsy
22 20 breq1d x=yxsRysR
23 21 22 anbi12d x=yLsxxsRLsyysR
24 23 rexrab yxNo|LsxxsRbdayy=zyNoLsyysRbdayy=z
25 19 24 bitri zbdayxNo|LsxxsRyNoLsyysRbdayy=z
26 25 imbi1i zbdayxNo|LsxxsRbdayXzyNoLsyysRbdayy=zbdayXz
27 r19.23v yNoLsyysRbdayy=zbdayXzyNoLsyysRbdayy=zbdayXz
28 eqcom bdayy=zz=bdayy
29 28 anbi1ci LsyysRbdayy=zz=bdayyLsyysR
30 29 imbi1i LsyysRbdayy=zbdayXzz=bdayyLsyysRbdayXz
31 impexp z=bdayyLsyysRbdayXzz=bdayyLsyysRbdayXz
32 30 31 bitri LsyysRbdayy=zbdayXzz=bdayyLsyysRbdayXz
33 32 ralbii yNoLsyysRbdayy=zbdayXzyNoz=bdayyLsyysRbdayXz
34 26 27 33 3bitr2i zbdayxNo|LsxxsRbdayXzyNoz=bdayyLsyysRbdayXz
35 34 albii zzbdayxNo|LsxxsRbdayXzzyNoz=bdayyLsyysRbdayXz
36 df-ral zbdayxNo|LsxxsRbdayXzzzbdayxNo|LsxxsRbdayXz
37 ralcom4 yNozz=bdayyLsyysRbdayXzzyNoz=bdayyLsyysRbdayXz
38 35 36 37 3bitr4i zbdayxNo|LsxxsRbdayXzyNozz=bdayyLsyysRbdayXz
39 fvex bdayyV
40 sseq2 z=bdayybdayXzbdayXbdayy
41 40 imbi2d z=bdayyLsyysRbdayXzLsyysRbdayXbdayy
42 39 41 ceqsalv zz=bdayyLsyysRbdayXzLsyysRbdayXbdayy
43 42 ralbii yNozz=bdayyLsyysRbdayXzyNoLsyysRbdayXbdayy
44 38 43 bitri zbdayxNo|LsxxsRbdayXzyNoLsyysRbdayXbdayy
45 17 44 bitri bdayXbdayxNo|LsxxsRyNoLsyysRbdayXbdayy
46 16 45 bitr3di LsRXNoLsXXsRbdayXbdayxNo|LsxxsRbdayxNo|LsxxsRbdayXyNoLsyysRbdayXbdayy
47 2 46 bitrid LsRXNoLsXXsRbdayX=bdayxNo|LsxxsRyNoLsyysRbdayXbdayy
48 47 pm5.32da LsRXNoLsXXsRbdayX=bdayxNo|LsxxsRLsXXsRyNoLsyysRbdayXbdayy
49 df-3an LsXXsRbdayX=bdayxNo|LsxxsRLsXXsRbdayX=bdayxNo|LsxxsR
50 df-3an LsXXsRyNoLsyysRbdayXbdayyLsXXsRyNoLsyysRbdayXbdayy
51 48 49 50 3bitr4g LsRXNoLsXXsRbdayX=bdayxNo|LsxxsRLsXXsRyNoLsyysRbdayXbdayy
52 1 51 bitrd LsRXNoL|sR=XLsXXsRyNoLsyysRbdayXbdayy