Metamath Proof Explorer


Theorem eqscut2

Description: Condition for equality to a surreal cut. (Contributed by Scott Fenton, 8-Aug-2024)

Ref Expression
Assertion eqscut2 L s R X No L | s R = X L s X X s R y No L s y y s R bday X bday y

Proof

Step Hyp Ref Expression
1 eqscut L s R X No L | s R = X L s X X s R bday X = bday x No | L s x x s R
2 eqss bday X = bday x No | L s x x s R bday X bday x No | L s x x s R bday x No | L s x x s R bday X
3 sneq x = X x = X
4 3 breq2d x = X L s x L s X
5 3 breq1d x = X x s R X s R
6 4 5 anbi12d x = X L s x x s R L s X X s R
7 6 elrab3 X No X x No | L s x x s R L s X X s R
8 7 adantl L s R X No X x No | L s x x s R L s X X s R
9 8 biimpar L s R X No L s X X s R X x No | L s x x s R
10 bdayfn bday Fn No
11 ssrab2 x No | L s x x s R No
12 fnfvima bday Fn No x No | L s x x s R No X x No | L s x x s R bday X bday x No | L s x x s R
13 10 11 12 mp3an12 X x No | L s x x s R bday X bday x No | L s x x s R
14 intss1 bday X bday x No | L s x x s R bday x No | L s x x s R bday X
15 9 13 14 3syl L s R X No L s X X s R bday x No | L s x x s R bday X
16 15 biantrud L s R X No L s X X s R bday X bday x No | L s x x s R bday X bday x No | L s x x s R bday x No | L s x x s R bday X
17 ssint bday X bday x No | L s x x s R z bday x No | L s x x s R bday X z
18 fvelimab bday Fn No x No | L s x x s R No z bday x No | L s x x s R y x No | L s x x s R bday y = z
19 10 11 18 mp2an z bday x No | L s x x s R y x No | L s x x s R bday y = z
20 sneq x = y x = y
21 20 breq2d x = y L s x L s y
22 20 breq1d x = y x s R y s R
23 21 22 anbi12d x = y L s x x s R L s y y s R
24 23 rexrab y x No | L s x x s R bday y = z y No L s y y s R bday y = z
25 19 24 bitri z bday x No | L s x x s R y No L s y y s R bday y = z
26 25 imbi1i z bday x No | L s x x s R bday X z y No L s y y s R bday y = z bday X z
27 r19.23v y No L s y y s R bday y = z bday X z y No L s y y s R bday y = z bday X z
28 eqcom bday y = z z = bday y
29 28 anbi1ci L s y y s R bday y = z z = bday y L s y y s R
30 29 imbi1i L s y y s R bday y = z bday X z z = bday y L s y y s R bday X z
31 impexp z = bday y L s y y s R bday X z z = bday y L s y y s R bday X z
32 30 31 bitri L s y y s R bday y = z bday X z z = bday y L s y y s R bday X z
33 32 ralbii y No L s y y s R bday y = z bday X z y No z = bday y L s y y s R bday X z
34 26 27 33 3bitr2i z bday x No | L s x x s R bday X z y No z = bday y L s y y s R bday X z
35 34 albii z z bday x No | L s x x s R bday X z z y No z = bday y L s y y s R bday X z
36 df-ral z bday x No | L s x x s R bday X z z z bday x No | L s x x s R bday X z
37 ralcom4 y No z z = bday y L s y y s R bday X z z y No z = bday y L s y y s R bday X z
38 35 36 37 3bitr4i z bday x No | L s x x s R bday X z y No z z = bday y L s y y s R bday X z
39 fvex bday y V
40 sseq2 z = bday y bday X z bday X bday y
41 40 imbi2d z = bday y L s y y s R bday X z L s y y s R bday X bday y
42 39 41 ceqsalv z z = bday y L s y y s R bday X z L s y y s R bday X bday y
43 42 ralbii y No z z = bday y L s y y s R bday X z y No L s y y s R bday X bday y
44 38 43 bitri z bday x No | L s x x s R bday X z y No L s y y s R bday X bday y
45 17 44 bitri bday X bday x No | L s x x s R y No L s y y s R bday X bday y
46 16 45 bitr3di L s R X No L s X X s R bday X bday x No | L s x x s R bday x No | L s x x s R bday X y No L s y y s R bday X bday y
47 2 46 syl5bb L s R X No L s X X s R bday X = bday x No | L s x x s R y No L s y y s R bday X bday y
48 47 pm5.32da L s R X No L s X X s R bday X = bday x No | L s x x s R L s X X s R y No L s y y s R bday X bday y
49 df-3an L s X X s R bday X = bday x No | L s x x s R L s X X s R bday X = bday x No | L s x x s R
50 df-3an L s X X s R y No L s y y s R bday X bday y L s X X s R y No L s y y s R bday X bday y
51 48 49 50 3bitr4g L s R X No L s X X s R bday X = bday x No | L s x x s R L s X X s R y No L s y y s R bday X bday y
52 1 51 bitrd L s R X No L | s R = X L s X X s R y No L s y y s R bday X bday y