Metamath Proof Explorer


Theorem equivcau

Description: If the metric D is "strongly finer" than C (meaning that there is a positive real constant R such that C ( x , y ) <_ R x. D ( x , y ) ), all the D -Cauchy sequences are also C -Cauchy. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they have the same Cauchy sequences.) (Contributed by Mario Carneiro, 14-Sep-2015)

Ref Expression
Hypotheses equivcau.1 φ C Met X
equivcau.2 φ D Met X
equivcau.3 φ R +
equivcau.4 φ x X y X x C y R x D y
Assertion equivcau φ Cau D Cau C

Proof

Step Hyp Ref Expression
1 equivcau.1 φ C Met X
2 equivcau.2 φ D Met X
3 equivcau.3 φ R +
4 equivcau.4 φ x X y X x C y R x D y
5 simpr φ f X 𝑝𝑚 r + r +
6 3 ad2antrr φ f X 𝑝𝑚 r + R +
7 5 6 rpdivcld φ f X 𝑝𝑚 r + r R +
8 oveq2 s = r R f k ball D s = f k ball D r R
9 8 feq3d s = r R f k : k f k ball D s f k : k f k ball D r R
10 9 rexbidv s = r R k f k : k f k ball D s k f k : k f k ball D r R
11 10 rspcv r R + s + k f k : k f k ball D s k f k : k f k ball D r R
12 7 11 syl φ f X 𝑝𝑚 r + s + k f k : k f k ball D s k f k : k f k ball D r R
13 simprr φ f X 𝑝𝑚 r + k f k : k f k ball D r R f k : k f k ball D r R
14 elpmi f X 𝑝𝑚 f : dom f X dom f
15 14 simpld f X 𝑝𝑚 f : dom f X
16 15 ad3antlr φ f X 𝑝𝑚 r + k f k : k f k ball D r R f : dom f X
17 resss f k f
18 dmss f k f dom f k dom f
19 17 18 ax-mp dom f k dom f
20 uzid k k k
21 20 ad2antrl φ f X 𝑝𝑚 r + k f k : k f k ball D r R k k
22 fdm f k : k f k ball D r R dom f k = k
23 22 ad2antll φ f X 𝑝𝑚 r + k f k : k f k ball D r R dom f k = k
24 21 23 eleqtrrd φ f X 𝑝𝑚 r + k f k : k f k ball D r R k dom f k
25 19 24 sseldi φ f X 𝑝𝑚 r + k f k : k f k ball D r R k dom f
26 16 25 ffvelrnd φ f X 𝑝𝑚 r + k f k : k f k ball D r R f k X
27 eqid MetOpen C = MetOpen C
28 eqid MetOpen D = MetOpen D
29 27 28 1 2 3 4 metss2lem φ x X r + x ball D r R x ball C r
30 29 expr φ x X r + x ball D r R x ball C r
31 30 ralrimiva φ x X r + x ball D r R x ball C r
32 31 ad3antrrr φ f X 𝑝𝑚 r + k f k : k f k ball D r R x X r + x ball D r R x ball C r
33 simplr φ f X 𝑝𝑚 r + k f k : k f k ball D r R r +
34 oveq1 x = f k x ball D r R = f k ball D r R
35 oveq1 x = f k x ball C r = f k ball C r
36 34 35 sseq12d x = f k x ball D r R x ball C r f k ball D r R f k ball C r
37 36 imbi2d x = f k r + x ball D r R x ball C r r + f k ball D r R f k ball C r
38 37 rspcv f k X x X r + x ball D r R x ball C r r + f k ball D r R f k ball C r
39 26 32 33 38 syl3c φ f X 𝑝𝑚 r + k f k : k f k ball D r R f k ball D r R f k ball C r
40 13 39 fssd φ f X 𝑝𝑚 r + k f k : k f k ball D r R f k : k f k ball C r
41 40 expr φ f X 𝑝𝑚 r + k f k : k f k ball D r R f k : k f k ball C r
42 41 reximdva φ f X 𝑝𝑚 r + k f k : k f k ball D r R k f k : k f k ball C r
43 12 42 syld φ f X 𝑝𝑚 r + s + k f k : k f k ball D s k f k : k f k ball C r
44 43 ralrimdva φ f X 𝑝𝑚 s + k f k : k f k ball D s r + k f k : k f k ball C r
45 44 ss2rabdv φ f X 𝑝𝑚 | s + k f k : k f k ball D s f X 𝑝𝑚 | r + k f k : k f k ball C r
46 metxmet D Met X D ∞Met X
47 caufval D ∞Met X Cau D = f X 𝑝𝑚 | s + k f k : k f k ball D s
48 2 46 47 3syl φ Cau D = f X 𝑝𝑚 | s + k f k : k f k ball D s
49 metxmet C Met X C ∞Met X
50 caufval C ∞Met X Cau C = f X 𝑝𝑚 | r + k f k : k f k ball C r
51 1 49 50 3syl φ Cau C = f X 𝑝𝑚 | r + k f k : k f k ball C r
52 45 48 51 3sstr4d φ Cau D Cau C