Description: If the metric D is "strongly finer" than C (meaning that there is a positive real constant R such that C ( x , y ) <_ R x. D ( x , y ) ), all the D -Cauchy sequences are also C -Cauchy. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they have the same Cauchy sequences.) (Contributed by Mario Carneiro, 14-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | equivcau.1 | |
|
equivcau.2 | |
||
equivcau.3 | |
||
equivcau.4 | |
||
Assertion | equivcau | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equivcau.1 | |
|
2 | equivcau.2 | |
|
3 | equivcau.3 | |
|
4 | equivcau.4 | |
|
5 | simpr | |
|
6 | 3 | ad2antrr | |
7 | 5 6 | rpdivcld | |
8 | oveq2 | |
|
9 | 8 | feq3d | |
10 | 9 | rexbidv | |
11 | 10 | rspcv | |
12 | 7 11 | syl | |
13 | simprr | |
|
14 | elpmi | |
|
15 | 14 | simpld | |
16 | 15 | ad3antlr | |
17 | resss | |
|
18 | dmss | |
|
19 | 17 18 | ax-mp | |
20 | uzid | |
|
21 | 20 | ad2antrl | |
22 | fdm | |
|
23 | 22 | ad2antll | |
24 | 21 23 | eleqtrrd | |
25 | 19 24 | sselid | |
26 | 16 25 | ffvelcdmd | |
27 | eqid | |
|
28 | eqid | |
|
29 | 27 28 1 2 3 4 | metss2lem | |
30 | 29 | expr | |
31 | 30 | ralrimiva | |
32 | 31 | ad3antrrr | |
33 | simplr | |
|
34 | oveq1 | |
|
35 | oveq1 | |
|
36 | 34 35 | sseq12d | |
37 | 36 | imbi2d | |
38 | 37 | rspcv | |
39 | 26 32 33 38 | syl3c | |
40 | 13 39 | fssd | |
41 | 40 | expr | |
42 | 41 | reximdva | |
43 | 12 42 | syld | |
44 | 43 | ralrimdva | |
45 | 44 | ss2rabdv | |
46 | metxmet | |
|
47 | caufval | |
|
48 | 2 46 47 | 3syl | |
49 | metxmet | |
|
50 | caufval | |
|
51 | 1 49 50 | 3syl | |
52 | 45 48 51 | 3sstr4d | |