Metamath Proof Explorer


Theorem equivcau

Description: If the metric D is "strongly finer" than C (meaning that there is a positive real constant R such that C ( x , y ) <_ R x. D ( x , y ) ), all the D -Cauchy sequences are also C -Cauchy. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they have the same Cauchy sequences.) (Contributed by Mario Carneiro, 14-Sep-2015)

Ref Expression
Hypotheses equivcau.1 φCMetX
equivcau.2 φDMetX
equivcau.3 φR+
equivcau.4 φxXyXxCyRxDy
Assertion equivcau φCauDCauC

Proof

Step Hyp Ref Expression
1 equivcau.1 φCMetX
2 equivcau.2 φDMetX
3 equivcau.3 φR+
4 equivcau.4 φxXyXxCyRxDy
5 simpr φfX𝑝𝑚r+r+
6 3 ad2antrr φfX𝑝𝑚r+R+
7 5 6 rpdivcld φfX𝑝𝑚r+rR+
8 oveq2 s=rRfkballDs=fkballDrR
9 8 feq3d s=rRfk:kfkballDsfk:kfkballDrR
10 9 rexbidv s=rRkfk:kfkballDskfk:kfkballDrR
11 10 rspcv rR+s+kfk:kfkballDskfk:kfkballDrR
12 7 11 syl φfX𝑝𝑚r+s+kfk:kfkballDskfk:kfkballDrR
13 simprr φfX𝑝𝑚r+kfk:kfkballDrRfk:kfkballDrR
14 elpmi fX𝑝𝑚f:domfXdomf
15 14 simpld fX𝑝𝑚f:domfX
16 15 ad3antlr φfX𝑝𝑚r+kfk:kfkballDrRf:domfX
17 resss fkf
18 dmss fkfdomfkdomf
19 17 18 ax-mp domfkdomf
20 uzid kkk
21 20 ad2antrl φfX𝑝𝑚r+kfk:kfkballDrRkk
22 fdm fk:kfkballDrRdomfk=k
23 22 ad2antll φfX𝑝𝑚r+kfk:kfkballDrRdomfk=k
24 21 23 eleqtrrd φfX𝑝𝑚r+kfk:kfkballDrRkdomfk
25 19 24 sselid φfX𝑝𝑚r+kfk:kfkballDrRkdomf
26 16 25 ffvelcdmd φfX𝑝𝑚r+kfk:kfkballDrRfkX
27 eqid MetOpenC=MetOpenC
28 eqid MetOpenD=MetOpenD
29 27 28 1 2 3 4 metss2lem φxXr+xballDrRxballCr
30 29 expr φxXr+xballDrRxballCr
31 30 ralrimiva φxXr+xballDrRxballCr
32 31 ad3antrrr φfX𝑝𝑚r+kfk:kfkballDrRxXr+xballDrRxballCr
33 simplr φfX𝑝𝑚r+kfk:kfkballDrRr+
34 oveq1 x=fkxballDrR=fkballDrR
35 oveq1 x=fkxballCr=fkballCr
36 34 35 sseq12d x=fkxballDrRxballCrfkballDrRfkballCr
37 36 imbi2d x=fkr+xballDrRxballCrr+fkballDrRfkballCr
38 37 rspcv fkXxXr+xballDrRxballCrr+fkballDrRfkballCr
39 26 32 33 38 syl3c φfX𝑝𝑚r+kfk:kfkballDrRfkballDrRfkballCr
40 13 39 fssd φfX𝑝𝑚r+kfk:kfkballDrRfk:kfkballCr
41 40 expr φfX𝑝𝑚r+kfk:kfkballDrRfk:kfkballCr
42 41 reximdva φfX𝑝𝑚r+kfk:kfkballDrRkfk:kfkballCr
43 12 42 syld φfX𝑝𝑚r+s+kfk:kfkballDskfk:kfkballCr
44 43 ralrimdva φfX𝑝𝑚s+kfk:kfkballDsr+kfk:kfkballCr
45 44 ss2rabdv φfX𝑝𝑚|s+kfk:kfkballDsfX𝑝𝑚|r+kfk:kfkballCr
46 metxmet DMetXD∞MetX
47 caufval D∞MetXCauD=fX𝑝𝑚|s+kfk:kfkballDs
48 2 46 47 3syl φCauD=fX𝑝𝑚|s+kfk:kfkballDs
49 metxmet CMetXC∞MetX
50 caufval C∞MetXCauC=fX𝑝𝑚|r+kfk:kfkballCr
51 1 49 50 3syl φCauC=fX𝑝𝑚|r+kfk:kfkballCr
52 45 48 51 3sstr4d φCauDCauC