Metamath Proof Explorer


Theorem equivcfil

Description: If the metric D is "strongly finer" than C (meaning that there is a positive real constant R such that C ( x , y ) <_ R x. D ( x , y ) ), all the D -Cauchy filters are also C -Cauchy. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they have the same Cauchy sequences.) (Contributed by Mario Carneiro, 14-Sep-2015)

Ref Expression
Hypotheses equivcau.1 φCMetX
equivcau.2 φDMetX
equivcau.3 φR+
equivcau.4 φxXyXxCyRxDy
Assertion equivcfil φCauFilDCauFilC

Proof

Step Hyp Ref Expression
1 equivcau.1 φCMetX
2 equivcau.2 φDMetX
3 equivcau.3 φR+
4 equivcau.4 φxXyXxCyRxDy
5 simpr φfFilXr+r+
6 3 ad2antrr φfFilXr+R+
7 5 6 rpdivcld φfFilXr+rR+
8 oveq2 s=rRxballDs=xballDrR
9 8 eleq1d s=rRxballDsfxballDrRf
10 9 rexbidv s=rRxXxballDsfxXxballDrRf
11 10 rspcv rR+s+xXxballDsfxXxballDrRf
12 7 11 syl φfFilXr+s+xXxballDsfxXxballDrRf
13 simpllr φfFilXr+xXfFilX
14 eqid MetOpenC=MetOpenC
15 eqid MetOpenD=MetOpenD
16 14 15 1 2 3 4 metss2lem φxXr+xballDrRxballCr
17 16 ancom2s φr+xXxballDrRxballCr
18 17 adantlr φfFilXr+xXxballDrRxballCr
19 18 anassrs φfFilXr+xXxballDrRxballCr
20 1 ad3antrrr φfFilXr+xXCMetX
21 metxmet CMetXC∞MetX
22 20 21 syl φfFilXr+xXC∞MetX
23 simpr φfFilXr+xXxX
24 rpxr r+r*
25 24 ad2antlr φfFilXr+xXr*
26 blssm C∞MetXxXr*xballCrX
27 22 23 25 26 syl3anc φfFilXr+xXxballCrX
28 filss fFilXxballDrRfxballCrXxballDrRxballCrxballCrf
29 28 3exp2 fFilXxballDrRfxballCrXxballDrRxballCrxballCrf
30 29 com24 fFilXxballDrRxballCrxballCrXxballDrRfxballCrf
31 13 19 27 30 syl3c φfFilXr+xXxballDrRfxballCrf
32 31 reximdva φfFilXr+xXxballDrRfxXxballCrf
33 12 32 syld φfFilXr+s+xXxballDsfxXxballCrf
34 33 ralrimdva φfFilXs+xXxballDsfr+xXxballCrf
35 34 imdistanda φfFilXs+xXxballDsffFilXr+xXxballCrf
36 metxmet DMetXD∞MetX
37 iscfil3 D∞MetXfCauFilDfFilXs+xXxballDsf
38 2 36 37 3syl φfCauFilDfFilXs+xXxballDsf
39 iscfil3 C∞MetXfCauFilCfFilXr+xXxballCrf
40 1 21 39 3syl φfCauFilCfFilXr+xXxballCrf
41 35 38 40 3imtr4d φfCauFilDfCauFilC
42 41 ssrdv φCauFilDCauFilC