Description: If the metric D is "strongly finer" than C (meaning that there is a positive real constant R such that C ( x , y ) <_ R x. D ( x , y ) ), all the D -Cauchy filters are also C -Cauchy. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they have the same Cauchy sequences.) (Contributed by Mario Carneiro, 14-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | equivcau.1 | |
|
equivcau.2 | |
||
equivcau.3 | |
||
equivcau.4 | |
||
Assertion | equivcfil | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equivcau.1 | |
|
2 | equivcau.2 | |
|
3 | equivcau.3 | |
|
4 | equivcau.4 | |
|
5 | simpr | |
|
6 | 3 | ad2antrr | |
7 | 5 6 | rpdivcld | |
8 | oveq2 | |
|
9 | 8 | eleq1d | |
10 | 9 | rexbidv | |
11 | 10 | rspcv | |
12 | 7 11 | syl | |
13 | simpllr | |
|
14 | eqid | |
|
15 | eqid | |
|
16 | 14 15 1 2 3 4 | metss2lem | |
17 | 16 | ancom2s | |
18 | 17 | adantlr | |
19 | 18 | anassrs | |
20 | 1 | ad3antrrr | |
21 | metxmet | |
|
22 | 20 21 | syl | |
23 | simpr | |
|
24 | rpxr | |
|
25 | 24 | ad2antlr | |
26 | blssm | |
|
27 | 22 23 25 26 | syl3anc | |
28 | filss | |
|
29 | 28 | 3exp2 | |
30 | 29 | com24 | |
31 | 13 19 27 30 | syl3c | |
32 | 31 | reximdva | |
33 | 12 32 | syld | |
34 | 33 | ralrimdva | |
35 | 34 | imdistanda | |
36 | metxmet | |
|
37 | iscfil3 | |
|
38 | 2 36 37 | 3syl | |
39 | iscfil3 | |
|
40 | 1 21 39 | 3syl | |
41 | 35 38 40 | 3imtr4d | |
42 | 41 | ssrdv | |