Metamath Proof Explorer


Theorem esumdivc

Description: An extended sum divided by a constant. (Contributed by Thierry Arnoux, 6-Jul-2017)

Ref Expression
Hypotheses esumdivc.a φAV
esumdivc.b φkAB0+∞
esumdivc.c φC+
Assertion esumdivc φ*kAB÷𝑒C=*kAB÷𝑒C

Proof

Step Hyp Ref Expression
1 esumdivc.a φAV
2 esumdivc.b φkAB0+∞
3 esumdivc.c φC+
4 1red φ1
5 3 rpred φC
6 3 rpne0d φC0
7 rexdiv 1CC01÷𝑒C=1C
8 4 5 6 7 syl3anc φ1÷𝑒C=1C
9 ioorp 0+∞=+
10 ioossico 0+∞0+∞
11 9 10 eqsstrri +0+∞
12 3 rpreccld φ1C+
13 11 12 sselid φ1C0+∞
14 8 13 eqeltrd φ1÷𝑒C0+∞
15 1 2 14 esummulc1 φ*kAB𝑒1÷𝑒C=*kAB𝑒1÷𝑒C
16 iccssxr 0+∞*
17 2 ralrimiva φkAB0+∞
18 nfcv _kA
19 18 esumcl AVkAB0+∞*kAB0+∞
20 1 17 19 syl2anc φ*kAB0+∞
21 16 20 sselid φ*kAB*
22 xdivrec *kAB*CC0*kAB÷𝑒C=*kAB𝑒1÷𝑒C
23 21 5 6 22 syl3anc φ*kAB÷𝑒C=*kAB𝑒1÷𝑒C
24 16 2 sselid φkAB*
25 5 adantr φkAC
26 6 adantr φkAC0
27 xdivrec B*CC0B÷𝑒C=B𝑒1÷𝑒C
28 24 25 26 27 syl3anc φkAB÷𝑒C=B𝑒1÷𝑒C
29 28 esumeq2dv φ*kAB÷𝑒C=*kAB𝑒1÷𝑒C
30 15 23 29 3eqtr4d φ*kAB÷𝑒C=*kAB÷𝑒C