Metamath Proof Explorer


Theorem etransclem14

Description: Value of the term T , when J = 0 and ( C0 ) = P - 1 (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem14.n φP
etransclem14.m φM0
etransclem14.c φC:0M0N
etransclem14.t T=N!j=0MCj!ifP1<C00P1!P-1-C0!JP-1-C0j=1MifP<Cj0P!PCj!JjPCj
etransclem14.j φJ=0
etransclem14.cpm1 φC0=P1
Assertion etransclem14 φT=N!j=0MCj!P1!j=1MifP<Cj0P!PCj!jPCj

Proof

Step Hyp Ref Expression
1 etransclem14.n φP
2 etransclem14.m φM0
3 etransclem14.c φC:0M0N
4 etransclem14.t T=N!j=0MCj!ifP1<C00P1!P-1-C0!JP-1-C0j=1MifP<Cj0P!PCj!JjPCj
5 etransclem14.j φJ=0
6 etransclem14.cpm1 φC0=P1
7 fzssre 0N
8 nn0uz 0=0
9 2 8 eleqtrdi φM0
10 eluzfz1 M000M
11 9 10 syl φ00M
12 3 11 ffvelcdmd φC00N
13 7 12 sselid φC0
14 6 13 eqeltrrd φP1
15 13 14 lttri3d φC0=P1¬C0<P1¬P1<C0
16 6 15 mpbid φ¬C0<P1¬P1<C0
17 16 simprd φ¬P1<C0
18 17 iffalsed φifP1<C00P1!P-1-C0!JP-1-C0=P1!P-1-C0!JP-1-C0
19 14 recnd φP1
20 6 eqcomd φP1=C0
21 19 20 subeq0bd φP-1-C0=0
22 21 fveq2d φP-1-C0!=0!
23 fac0 0!=1
24 22 23 eqtrdi φP-1-C0!=1
25 24 oveq2d φP1!P-1-C0!=P1!1
26 nnm1nn0 PP10
27 1 26 syl φP10
28 27 faccld φP1!
29 28 nncnd φP1!
30 29 div1d φP1!1=P1!
31 25 30 eqtrd φP1!P-1-C0!=P1!
32 5 21 oveq12d φJP-1-C0=00
33 0exp0e1 00=1
34 32 33 eqtrdi φJP-1-C0=1
35 31 34 oveq12d φP1!P-1-C0!JP-1-C0=P1!1
36 29 mulridd φP1!1=P1!
37 18 35 36 3eqtrd φifP1<C00P1!P-1-C0!JP-1-C0=P1!
38 5 oveq1d φJj=0j
39 df-neg j=0j
40 38 39 eqtr4di φJj=j
41 40 oveq1d φJjPCj=jPCj
42 41 oveq2d φP!PCj!JjPCj=P!PCj!jPCj
43 42 ifeq2d φifP<Cj0P!PCj!JjPCj=ifP<Cj0P!PCj!jPCj
44 43 prodeq2ad φj=1MifP<Cj0P!PCj!JjPCj=j=1MifP<Cj0P!PCj!jPCj
45 37 44 oveq12d φifP1<C00P1!P-1-C0!JP-1-C0j=1MifP<Cj0P!PCj!JjPCj=P1!j=1MifP<Cj0P!PCj!jPCj
46 45 oveq2d φN!j=0MCj!ifP1<C00P1!P-1-C0!JP-1-C0j=1MifP<Cj0P!PCj!JjPCj=N!j=0MCj!P1!j=1MifP<Cj0P!PCj!jPCj
47 4 46 eqtrid φT=N!j=0MCj!P1!j=1MifP<Cj0P!PCj!jPCj