Metamath Proof Explorer


Theorem etransclem2

Description: Derivative of G . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem2.xf _ x F
etransclem2.f φ F :
etransclem2.dvnf φ i 0 R + 1 D n F i :
etransclem2.g G = x i = 0 R D n F i x
Assertion etransclem2 φ D G = x i = 0 R D n F i + 1 x

Proof

Step Hyp Ref Expression
1 etransclem2.xf _ x F
2 etransclem2.f φ F :
3 etransclem2.dvnf φ i 0 R + 1 D n F i :
4 etransclem2.g G = x i = 0 R D n F i x
5 4 oveq2i D G = dx i = 0 R D n F i x d x
6 eqid TopOpen fld = TopOpen fld
7 6 tgioo2 topGen ran . = TopOpen fld 𝑡
8 reelprrecn
9 8 a1i φ
10 reopn topGen ran .
11 10 a1i φ topGen ran .
12 fzfid φ 0 R Fin
13 fzelp1 i 0 R i 0 R + 1
14 13 3 sylan2 φ i 0 R D n F i :
15 14 3adant3 φ i 0 R x D n F i :
16 simp3 φ i 0 R x x
17 15 16 ffvelrnd φ i 0 R x D n F i x
18 fzp1elp1 i 0 R i + 1 0 R + 1
19 ovex i + 1 V
20 eleq1 j = i + 1 j 0 R + 1 i + 1 0 R + 1
21 20 anbi2d j = i + 1 φ j 0 R + 1 φ i + 1 0 R + 1
22 fveq2 j = i + 1 D n F j = D n F i + 1
23 22 feq1d j = i + 1 D n F j : D n F i + 1 :
24 21 23 imbi12d j = i + 1 φ j 0 R + 1 D n F j : φ i + 1 0 R + 1 D n F i + 1 :
25 eleq1 i = j i 0 R + 1 j 0 R + 1
26 25 anbi2d i = j φ i 0 R + 1 φ j 0 R + 1
27 fveq2 i = j D n F i = D n F j
28 27 feq1d i = j D n F i : D n F j :
29 26 28 imbi12d i = j φ i 0 R + 1 D n F i : φ j 0 R + 1 D n F j :
30 29 3 chvarvv φ j 0 R + 1 D n F j :
31 19 24 30 vtocl φ i + 1 0 R + 1 D n F i + 1 :
32 18 31 sylan2 φ i 0 R D n F i + 1 :
33 32 3adant3 φ i 0 R x D n F i + 1 :
34 33 16 ffvelrnd φ i 0 R x D n F i + 1 x
35 14 ffnd φ i 0 R D n F i Fn
36 nfcv _ x
37 nfcv _ x D n
38 36 37 1 nfov _ x D n F
39 nfcv _ x i
40 38 39 nffv _ x D n F i
41 40 dffn5f D n F i Fn D n F i = x D n F i x
42 35 41 sylib φ i 0 R D n F i = x D n F i x
43 42 eqcomd φ i 0 R x D n F i x = D n F i
44 43 oveq2d φ i 0 R dx D n F i x d x = D D n F i
45 ax-resscn
46 45 a1i φ i 0 R
47 ffdm F : F : dom F dom F
48 2 47 syl φ F : dom F dom F
49 cnex V
50 49 a1i φ V
51 reex V
52 elpm2g V V F 𝑝𝑚 F : dom F dom F
53 50 51 52 sylancl φ F 𝑝𝑚 F : dom F dom F
54 48 53 mpbird φ F 𝑝𝑚
55 54 adantr φ i 0 R F 𝑝𝑚
56 elfznn0 i 0 R i 0
57 56 adantl φ i 0 R i 0
58 dvnp1 F 𝑝𝑚 i 0 D n F i + 1 = D D n F i
59 46 55 57 58 syl3anc φ i 0 R D n F i + 1 = D D n F i
60 32 ffnd φ i 0 R D n F i + 1 Fn
61 nfcv _ x i + 1
62 38 61 nffv _ x D n F i + 1
63 62 dffn5f D n F i + 1 Fn D n F i + 1 = x D n F i + 1 x
64 60 63 sylib φ i 0 R D n F i + 1 = x D n F i + 1 x
65 44 59 64 3eqtr2d φ i 0 R dx D n F i x d x = x D n F i + 1 x
66 7 6 9 11 12 17 34 65 dvmptfsum φ dx i = 0 R D n F i x d x = x i = 0 R D n F i + 1 x
67 5 66 eqtrid φ D G = x i = 0 R D n F i + 1 x