Metamath Proof Explorer


Theorem etransclem2

Description: Derivative of G . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem2.xf _xF
etransclem2.f φF:
etransclem2.dvnf φi0R+1DnFi:
etransclem2.g G=xi=0RDnFix
Assertion etransclem2 φDG=xi=0RDnFi+1x

Proof

Step Hyp Ref Expression
1 etransclem2.xf _xF
2 etransclem2.f φF:
3 etransclem2.dvnf φi0R+1DnFi:
4 etransclem2.g G=xi=0RDnFix
5 4 oveq2i DG=dxi=0RDnFixdx
6 eqid TopOpenfld=TopOpenfld
7 6 tgioo2 topGenran.=TopOpenfld𝑡
8 reelprrecn
9 8 a1i φ
10 reopn topGenran.
11 10 a1i φtopGenran.
12 fzfid φ0RFin
13 fzelp1 i0Ri0R+1
14 13 3 sylan2 φi0RDnFi:
15 14 3adant3 φi0RxDnFi:
16 simp3 φi0Rxx
17 15 16 ffvelcdmd φi0RxDnFix
18 fzp1elp1 i0Ri+10R+1
19 ovex i+1V
20 eleq1 j=i+1j0R+1i+10R+1
21 20 anbi2d j=i+1φj0R+1φi+10R+1
22 fveq2 j=i+1DnFj=DnFi+1
23 22 feq1d j=i+1DnFj:DnFi+1:
24 21 23 imbi12d j=i+1φj0R+1DnFj:φi+10R+1DnFi+1:
25 eleq1 i=ji0R+1j0R+1
26 25 anbi2d i=jφi0R+1φj0R+1
27 fveq2 i=jDnFi=DnFj
28 27 feq1d i=jDnFi:DnFj:
29 26 28 imbi12d i=jφi0R+1DnFi:φj0R+1DnFj:
30 29 3 chvarvv φj0R+1DnFj:
31 19 24 30 vtocl φi+10R+1DnFi+1:
32 18 31 sylan2 φi0RDnFi+1:
33 32 3adant3 φi0RxDnFi+1:
34 33 16 ffvelcdmd φi0RxDnFi+1x
35 14 ffnd φi0RDnFiFn
36 nfcv _x
37 nfcv _xDn
38 36 37 1 nfov _xDnF
39 nfcv _xi
40 38 39 nffv _xDnFi
41 40 dffn5f DnFiFnDnFi=xDnFix
42 35 41 sylib φi0RDnFi=xDnFix
43 42 eqcomd φi0RxDnFix=DnFi
44 43 oveq2d φi0RdxDnFixdx=DDnFi
45 ax-resscn
46 45 a1i φi0R
47 ffdm F:F:domFdomF
48 2 47 syl φF:domFdomF
49 cnex V
50 49 a1i φV
51 reex V
52 elpm2g VVF𝑝𝑚F:domFdomF
53 50 51 52 sylancl φF𝑝𝑚F:domFdomF
54 48 53 mpbird φF𝑝𝑚
55 54 adantr φi0RF𝑝𝑚
56 elfznn0 i0Ri0
57 56 adantl φi0Ri0
58 dvnp1 F𝑝𝑚i0DnFi+1=DDnFi
59 46 55 57 58 syl3anc φi0RDnFi+1=DDnFi
60 32 ffnd φi0RDnFi+1Fn
61 nfcv _xi+1
62 38 61 nffv _xDnFi+1
63 62 dffn5f DnFi+1FnDnFi+1=xDnFi+1x
64 60 63 sylib φi0RDnFi+1=xDnFi+1x
65 44 59 64 3eqtr2d φi0RdxDnFixdx=xDnFi+1x
66 7 6 9 11 12 17 34 65 dvmptfsum φdxi=0RDnFixdx=xi=0RDnFi+1x
67 5 66 eqtrid φDG=xi=0RDnFi+1x