Metamath Proof Explorer


Theorem eulerpartlemgf

Description: Lemma for eulerpart : Images under G have finite support. (Contributed by Thierry Arnoux, 29-Aug-2018)

Ref Expression
Hypotheses eulerpart.p P=f0|f-1Finkfkk=N
eulerpart.o O=gP|ng-1¬2n
eulerpart.d D=gP|ngn1
eulerpart.j J=z|¬2z
eulerpart.f F=xJ,y02yx
eulerpart.h H=r𝒫0FinJ|rsuppFin
eulerpart.m M=rHxy|xJyrx
eulerpart.r R=f|f-1Fin
eulerpart.t T=f0|f-1J
eulerpart.g G=oTR𝟙FMbitsoJ
Assertion eulerpartlemgf ATRGA-1Fin

Proof

Step Hyp Ref Expression
1 eulerpart.p P=f0|f-1Finkfkk=N
2 eulerpart.o O=gP|ng-1¬2n
3 eulerpart.d D=gP|ngn1
4 eulerpart.j J=z|¬2z
5 eulerpart.f F=xJ,y02yx
6 eulerpart.h H=r𝒫0FinJ|rsuppFin
7 eulerpart.m M=rHxy|xJyrx
8 eulerpart.r R=f|f-1Fin
9 eulerpart.t T=f0|f-1J
10 eulerpart.g G=oTR𝟙FMbitsoJ
11 1 2 3 4 5 6 7 8 9 10 eulerpartlemgv ATRGA=𝟙FMbitsAJ
12 11 cnveqd ATRGA-1=𝟙FMbitsAJ-1
13 12 imaeq1d ATRGA-11=𝟙FMbitsAJ-11
14 nnex V
15 imassrn FMbitsAJranF
16 4 5 oddpwdc F:J×01-1 onto
17 f1of F:J×01-1 ontoF:J×0
18 frn F:J×0ranF
19 16 17 18 mp2b ranF
20 15 19 sstri FMbitsAJ
21 indpi1 VFMbitsAJ𝟙FMbitsAJ-11=FMbitsAJ
22 14 20 21 mp2an 𝟙FMbitsAJ-11=FMbitsAJ
23 13 22 eqtrdi ATRGA-11=FMbitsAJ
24 ffun F:J×0FunF
25 16 17 24 mp2b FunF
26 inss2 𝒫J×0FinFin
27 1 2 3 4 5 6 7 8 9 10 eulerpartlemmf ATRbitsAJH
28 1 2 3 4 5 6 7 eulerpartlem1 M:H1-1 onto𝒫J×0Fin
29 f1of M:H1-1 onto𝒫J×0FinM:H𝒫J×0Fin
30 28 29 ax-mp M:H𝒫J×0Fin
31 30 ffvelcdmi bitsAJHMbitsAJ𝒫J×0Fin
32 27 31 syl ATRMbitsAJ𝒫J×0Fin
33 26 32 sselid ATRMbitsAJFin
34 imafi FunFMbitsAJFinFMbitsAJFin
35 25 33 34 sylancr ATRFMbitsAJFin
36 23 35 eqeltrd ATRGA-11Fin
37 1 2 3 4 5 6 7 8 9 10 eulerpartgbij G:TR1-1 onto01R
38 f1of G:TR1-1 onto01RG:TR01R
39 37 38 ax-mp G:TR01R
40 39 ffvelcdmi ATRGA01R
41 elin GA01RGA01GAR
42 41 simplbi GA01RGA01
43 elmapi GA01GA:01
44 40 42 43 3syl ATRGA:01
45 44 ffund ATRFunGA
46 ssv 0V
47 dfn2 =00
48 ssdif 0V00V0
49 47 48 eqsstrid 0VV0
50 46 49 ax-mp V0
51 sspreima FunGAV0GA-1GA-1V0
52 45 50 51 sylancl ATRGA-1GA-1V0
53 fvex GAV
54 0nn0 00
55 suppimacnv GAV00GAsupp0=GA-1V0
56 53 54 55 mp2an GAsupp0=GA-1V0
57 0ne1 01
58 difprsn1 01010=1
59 57 58 ax-mp 010=1
60 59 eqcomi 1=010
61 60 ffs2 V00GA:01GAsupp0=GA-11
62 14 54 61 mp3an12 GA:01GAsupp0=GA-11
63 44 62 syl ATRGAsupp0=GA-11
64 56 63 eqtr3id ATRGA-1V0=GA-11
65 52 64 sseqtrd ATRGA-1GA-11
66 ssfi GA-11FinGA-1GA-11GA-1Fin
67 36 65 66 syl2anc ATRGA-1Fin