Metamath Proof Explorer


Theorem evl1expd

Description: Polynomial evaluation builder for an exponential. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses evl1addd.q O=eval1R
evl1addd.p P=Poly1R
evl1addd.b B=BaseR
evl1addd.u U=BaseP
evl1addd.1 φRCRing
evl1addd.2 φYB
evl1addd.3 φMUOMY=V
evl1expd.f ˙=mulGrpP
evl1expd.e ×˙=mulGrpR
evl1expd.4 φN0
Assertion evl1expd φN˙MUON˙MY=N×˙V

Proof

Step Hyp Ref Expression
1 evl1addd.q O=eval1R
2 evl1addd.p P=Poly1R
3 evl1addd.b B=BaseR
4 evl1addd.u U=BaseP
5 evl1addd.1 φRCRing
6 evl1addd.2 φYB
7 evl1addd.3 φMUOMY=V
8 evl1expd.f ˙=mulGrpP
9 evl1expd.e ×˙=mulGrpR
10 evl1expd.4 φN0
11 eqid mulGrpP=mulGrpP
12 11 4 mgpbas U=BasemulGrpP
13 crngring RCRingRRing
14 5 13 syl φRRing
15 2 ply1ring RRingPRing
16 11 ringmgp PRingmulGrpPMnd
17 14 15 16 3syl φmulGrpPMnd
18 7 simpld φMU
19 12 8 17 10 18 mulgnn0cld φN˙MU
20 eqid R𝑠B=R𝑠B
21 1 2 20 3 evl1rhm RCRingOPRingHomR𝑠B
22 5 21 syl φOPRingHomR𝑠B
23 eqid mulGrpR𝑠B=mulGrpR𝑠B
24 11 23 rhmmhm OPRingHomR𝑠BOmulGrpPMndHommulGrpR𝑠B
25 22 24 syl φOmulGrpPMndHommulGrpR𝑠B
26 eqid mulGrpR𝑠B=mulGrpR𝑠B
27 12 8 26 mhmmulg OmulGrpPMndHommulGrpR𝑠BN0MUON˙M=NmulGrpR𝑠BOM
28 25 10 18 27 syl3anc φON˙M=NmulGrpR𝑠BOM
29 eqid mulGrpR𝑠B=mulGrpR𝑠B
30 eqidd φBasemulGrpR𝑠B=BasemulGrpR𝑠B
31 3 fvexi BV
32 eqid mulGrpR=mulGrpR
33 eqid mulGrpR𝑠B=mulGrpR𝑠B
34 eqid BasemulGrpR𝑠B=BasemulGrpR𝑠B
35 eqid BasemulGrpR𝑠B=BasemulGrpR𝑠B
36 eqid +mulGrpR𝑠B=+mulGrpR𝑠B
37 eqid +mulGrpR𝑠B=+mulGrpR𝑠B
38 20 32 33 23 34 35 36 37 pwsmgp RCRingBVBasemulGrpR𝑠B=BasemulGrpR𝑠B+mulGrpR𝑠B=+mulGrpR𝑠B
39 5 31 38 sylancl φBasemulGrpR𝑠B=BasemulGrpR𝑠B+mulGrpR𝑠B=+mulGrpR𝑠B
40 39 simpld φBasemulGrpR𝑠B=BasemulGrpR𝑠B
41 ssv BasemulGrpR𝑠BV
42 41 a1i φBasemulGrpR𝑠BV
43 ovexd φxVyVx+mulGrpR𝑠ByV
44 39 simprd φ+mulGrpR𝑠B=+mulGrpR𝑠B
45 44 oveqdr φxVyVx+mulGrpR𝑠By=x+mulGrpR𝑠By
46 26 29 30 40 42 43 45 mulgpropd φmulGrpR𝑠B=mulGrpR𝑠B
47 46 oveqd φNmulGrpR𝑠BOM=NmulGrpR𝑠BOM
48 28 47 eqtrd φON˙M=NmulGrpR𝑠BOM
49 48 fveq1d φON˙MY=NmulGrpR𝑠BOMY
50 32 ringmgp RRingmulGrpRMnd
51 14 50 syl φmulGrpRMnd
52 31 a1i φBV
53 eqid BaseR𝑠B=BaseR𝑠B
54 4 53 rhmf OPRingHomR𝑠BO:UBaseR𝑠B
55 22 54 syl φO:UBaseR𝑠B
56 55 18 ffvelcdmd φOMBaseR𝑠B
57 23 53 mgpbas BaseR𝑠B=BasemulGrpR𝑠B
58 57 40 eqtrid φBaseR𝑠B=BasemulGrpR𝑠B
59 56 58 eleqtrd φOMBasemulGrpR𝑠B
60 33 35 29 9 pwsmulg mulGrpRMndBVN0OMBasemulGrpR𝑠BYBNmulGrpR𝑠BOMY=N×˙OMY
61 51 52 10 59 6 60 syl23anc φNmulGrpR𝑠BOMY=N×˙OMY
62 7 simprd φOMY=V
63 62 oveq2d φN×˙OMY=N×˙V
64 61 63 eqtrd φNmulGrpR𝑠BOMY=N×˙V
65 49 64 eqtrd φON˙MY=N×˙V
66 19 65 jca φN˙MUON˙MY=N×˙V