Description: Polynomial evaluation builder for an exponential. (Contributed by Mario Carneiro, 12-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | evl1addd.q | |
|
evl1addd.p | |
||
evl1addd.b | |
||
evl1addd.u | |
||
evl1addd.1 | |
||
evl1addd.2 | |
||
evl1addd.3 | |
||
evl1expd.f | |
||
evl1expd.e | |
||
evl1expd.4 | |
||
Assertion | evl1expd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evl1addd.q | |
|
2 | evl1addd.p | |
|
3 | evl1addd.b | |
|
4 | evl1addd.u | |
|
5 | evl1addd.1 | |
|
6 | evl1addd.2 | |
|
7 | evl1addd.3 | |
|
8 | evl1expd.f | |
|
9 | evl1expd.e | |
|
10 | evl1expd.4 | |
|
11 | eqid | |
|
12 | 11 4 | mgpbas | |
13 | crngring | |
|
14 | 5 13 | syl | |
15 | 2 | ply1ring | |
16 | 11 | ringmgp | |
17 | 14 15 16 | 3syl | |
18 | 7 | simpld | |
19 | 12 8 17 10 18 | mulgnn0cld | |
20 | eqid | |
|
21 | 1 2 20 3 | evl1rhm | |
22 | 5 21 | syl | |
23 | eqid | |
|
24 | 11 23 | rhmmhm | |
25 | 22 24 | syl | |
26 | eqid | |
|
27 | 12 8 26 | mhmmulg | |
28 | 25 10 18 27 | syl3anc | |
29 | eqid | |
|
30 | eqidd | |
|
31 | 3 | fvexi | |
32 | eqid | |
|
33 | eqid | |
|
34 | eqid | |
|
35 | eqid | |
|
36 | eqid | |
|
37 | eqid | |
|
38 | 20 32 33 23 34 35 36 37 | pwsmgp | |
39 | 5 31 38 | sylancl | |
40 | 39 | simpld | |
41 | ssv | |
|
42 | 41 | a1i | |
43 | ovexd | |
|
44 | 39 | simprd | |
45 | 44 | oveqdr | |
46 | 26 29 30 40 42 43 45 | mulgpropd | |
47 | 46 | oveqd | |
48 | 28 47 | eqtrd | |
49 | 48 | fveq1d | |
50 | 32 | ringmgp | |
51 | 14 50 | syl | |
52 | 31 | a1i | |
53 | eqid | |
|
54 | 4 53 | rhmf | |
55 | 22 54 | syl | |
56 | 55 18 | ffvelcdmd | |
57 | 23 53 | mgpbas | |
58 | 57 40 | eqtrid | |
59 | 56 58 | eleqtrd | |
60 | 33 35 29 9 | pwsmulg | |
61 | 51 52 10 59 6 60 | syl23anc | |
62 | 7 | simprd | |
63 | 62 | oveq2d | |
64 | 61 63 | eqtrd | |
65 | 49 64 | eqtrd | |
66 | 19 65 | jca | |