Metamath Proof Explorer


Theorem evl1subd

Description: Polynomial evaluation builder for subtraction of polynomials. (Contributed by Mario Carneiro, 4-Jul-2015)

Ref Expression
Hypotheses evl1addd.q O = eval 1 R
evl1addd.p P = Poly 1 R
evl1addd.b B = Base R
evl1addd.u U = Base P
evl1addd.1 φ R CRing
evl1addd.2 φ Y B
evl1addd.3 φ M U O M Y = V
evl1addd.4 φ N U O N Y = W
evl1subd.s - ˙ = - P
evl1subd.d D = - R
Assertion evl1subd φ M - ˙ N U O M - ˙ N Y = V D W

Proof

Step Hyp Ref Expression
1 evl1addd.q O = eval 1 R
2 evl1addd.p P = Poly 1 R
3 evl1addd.b B = Base R
4 evl1addd.u U = Base P
5 evl1addd.1 φ R CRing
6 evl1addd.2 φ Y B
7 evl1addd.3 φ M U O M Y = V
8 evl1addd.4 φ N U O N Y = W
9 evl1subd.s - ˙ = - P
10 evl1subd.d D = - R
11 eqid R 𝑠 B = R 𝑠 B
12 1 2 11 3 evl1rhm R CRing O P RingHom R 𝑠 B
13 5 12 syl φ O P RingHom R 𝑠 B
14 rhmghm O P RingHom R 𝑠 B O P GrpHom R 𝑠 B
15 13 14 syl φ O P GrpHom R 𝑠 B
16 ghmgrp1 O P GrpHom R 𝑠 B P Grp
17 15 16 syl φ P Grp
18 7 simpld φ M U
19 8 simpld φ N U
20 4 9 grpsubcl P Grp M U N U M - ˙ N U
21 17 18 19 20 syl3anc φ M - ˙ N U
22 eqid - R 𝑠 B = - R 𝑠 B
23 4 9 22 ghmsub O P GrpHom R 𝑠 B M U N U O M - ˙ N = O M - R 𝑠 B O N
24 15 18 19 23 syl3anc φ O M - ˙ N = O M - R 𝑠 B O N
25 crngring R CRing R Ring
26 ringgrp R Ring R Grp
27 5 25 26 3syl φ R Grp
28 3 fvexi B V
29 28 a1i φ B V
30 eqid Base R 𝑠 B = Base R 𝑠 B
31 4 30 rhmf O P RingHom R 𝑠 B O : U Base R 𝑠 B
32 13 31 syl φ O : U Base R 𝑠 B
33 32 18 ffvelrnd φ O M Base R 𝑠 B
34 32 19 ffvelrnd φ O N Base R 𝑠 B
35 11 30 10 22 pwssub R Grp B V O M Base R 𝑠 B O N Base R 𝑠 B O M - R 𝑠 B O N = O M D f O N
36 27 29 33 34 35 syl22anc φ O M - R 𝑠 B O N = O M D f O N
37 24 36 eqtrd φ O M - ˙ N = O M D f O N
38 37 fveq1d φ O M - ˙ N Y = O M D f O N Y
39 11 3 30 5 29 33 pwselbas φ O M : B B
40 39 ffnd φ O M Fn B
41 11 3 30 5 29 34 pwselbas φ O N : B B
42 41 ffnd φ O N Fn B
43 fnfvof O M Fn B O N Fn B B V Y B O M D f O N Y = O M Y D O N Y
44 40 42 29 6 43 syl22anc φ O M D f O N Y = O M Y D O N Y
45 7 simprd φ O M Y = V
46 8 simprd φ O N Y = W
47 45 46 oveq12d φ O M Y D O N Y = V D W
48 38 44 47 3eqtrd φ O M - ˙ N Y = V D W
49 21 48 jca φ M - ˙ N U O M - ˙ N Y = V D W