Metamath Proof Explorer


Theorem evl1subd

Description: Polynomial evaluation builder for subtraction of polynomials. (Contributed by Mario Carneiro, 4-Jul-2015)

Ref Expression
Hypotheses evl1addd.q O=eval1R
evl1addd.p P=Poly1R
evl1addd.b B=BaseR
evl1addd.u U=BaseP
evl1addd.1 φRCRing
evl1addd.2 φYB
evl1addd.3 φMUOMY=V
evl1addd.4 φNUONY=W
evl1subd.s -˙=-P
evl1subd.d D=-R
Assertion evl1subd φM-˙NUOM-˙NY=VDW

Proof

Step Hyp Ref Expression
1 evl1addd.q O=eval1R
2 evl1addd.p P=Poly1R
3 evl1addd.b B=BaseR
4 evl1addd.u U=BaseP
5 evl1addd.1 φRCRing
6 evl1addd.2 φYB
7 evl1addd.3 φMUOMY=V
8 evl1addd.4 φNUONY=W
9 evl1subd.s -˙=-P
10 evl1subd.d D=-R
11 eqid R𝑠B=R𝑠B
12 1 2 11 3 evl1rhm RCRingOPRingHomR𝑠B
13 5 12 syl φOPRingHomR𝑠B
14 rhmghm OPRingHomR𝑠BOPGrpHomR𝑠B
15 13 14 syl φOPGrpHomR𝑠B
16 ghmgrp1 OPGrpHomR𝑠BPGrp
17 15 16 syl φPGrp
18 7 simpld φMU
19 8 simpld φNU
20 4 9 grpsubcl PGrpMUNUM-˙NU
21 17 18 19 20 syl3anc φM-˙NU
22 eqid -R𝑠B=-R𝑠B
23 4 9 22 ghmsub OPGrpHomR𝑠BMUNUOM-˙N=OM-R𝑠BON
24 15 18 19 23 syl3anc φOM-˙N=OM-R𝑠BON
25 crngring RCRingRRing
26 ringgrp RRingRGrp
27 5 25 26 3syl φRGrp
28 3 fvexi BV
29 28 a1i φBV
30 eqid BaseR𝑠B=BaseR𝑠B
31 4 30 rhmf OPRingHomR𝑠BO:UBaseR𝑠B
32 13 31 syl φO:UBaseR𝑠B
33 32 18 ffvelcdmd φOMBaseR𝑠B
34 32 19 ffvelcdmd φONBaseR𝑠B
35 11 30 10 22 pwssub RGrpBVOMBaseR𝑠BONBaseR𝑠BOM-R𝑠BON=OMDfON
36 27 29 33 34 35 syl22anc φOM-R𝑠BON=OMDfON
37 24 36 eqtrd φOM-˙N=OMDfON
38 37 fveq1d φOM-˙NY=OMDfONY
39 11 3 30 5 29 33 pwselbas φOM:BB
40 39 ffnd φOMFnB
41 11 3 30 5 29 34 pwselbas φON:BB
42 41 ffnd φONFnB
43 fnfvof OMFnBONFnBBVYBOMDfONY=OMYDONY
44 40 42 29 6 43 syl22anc φOMDfONY=OMYDONY
45 7 simprd φOMY=V
46 8 simprd φONY=W
47 45 46 oveq12d φOMYDONY=VDW
48 38 44 47 3eqtrd φOM-˙NY=VDW
49 21 48 jca φM-˙NUOM-˙NY=VDW