Metamath Proof Explorer


Theorem evls1gsummul

Description: Univariate polynomial evaluation maps (multiplicative) group sums to group sums. (Contributed by AV, 14-Sep-2019)

Ref Expression
Hypotheses evls1gsummul.q Q=SevalSub1R
evls1gsummul.k K=BaseS
evls1gsummul.w W=Poly1U
evls1gsummul.g G=mulGrpW
evls1gsummul.1 1˙=1W
evls1gsummul.u U=S𝑠R
evls1gsummul.p P=S𝑠K
evls1gsummul.h H=mulGrpP
evls1gsummul.b B=BaseW
evls1gsummul.s φSCRing
evls1gsummul.r φRSubRingS
evls1gsummul.y φxNYB
evls1gsummul.n φN0
evls1gsummul.f φfinSupp1˙xNY
Assertion evls1gsummul φQGxNY=HxNQY

Proof

Step Hyp Ref Expression
1 evls1gsummul.q Q=SevalSub1R
2 evls1gsummul.k K=BaseS
3 evls1gsummul.w W=Poly1U
4 evls1gsummul.g G=mulGrpW
5 evls1gsummul.1 1˙=1W
6 evls1gsummul.u U=S𝑠R
7 evls1gsummul.p P=S𝑠K
8 evls1gsummul.h H=mulGrpP
9 evls1gsummul.b B=BaseW
10 evls1gsummul.s φSCRing
11 evls1gsummul.r φRSubRingS
12 evls1gsummul.y φxNYB
13 evls1gsummul.n φN0
14 evls1gsummul.f φfinSupp1˙xNY
15 4 9 mgpbas B=BaseG
16 4 5 ringidval 1˙=0G
17 6 subrgcrng SCRingRSubRingSUCRing
18 10 11 17 syl2anc φUCRing
19 3 ply1crng UCRingWCRing
20 4 crngmgp WCRingGCMnd
21 18 19 20 3syl φGCMnd
22 crngring SCRingSRing
23 10 22 syl φSRing
24 2 fvexi KV
25 23 24 jctir φSRingKV
26 7 pwsring SRingKVPRing
27 8 ringmgp PRingHMnd
28 25 26 27 3syl φHMnd
29 nn0ex 0V
30 29 a1i φ0V
31 30 13 ssexd φNV
32 1 2 7 6 3 evls1rhm SCRingRSubRingSQWRingHomP
33 10 11 32 syl2anc φQWRingHomP
34 4 8 rhmmhm QWRingHomPQGMndHomH
35 33 34 syl φQGMndHomH
36 15 16 21 28 31 35 12 14 gsummptmhm φHxNQY=QGxNY
37 36 eqcomd φQGxNY=HxNQY