Metamath Proof Explorer


Theorem evlslem4

Description: The support of a tensor product of ring element families is contained in the product of the supports. (Contributed by Stefan O'Rear, 8-Mar-2015) (Revised by AV, 18-Jul-2019)

Ref Expression
Hypotheses evlslem4.b B=BaseR
evlslem4.z 0˙=0R
evlslem4.t ·˙=R
evlslem4.r φRRing
evlslem4.x φxIXB
evlslem4.y φyJYB
evlslem4.i φIV
evlslem4.j φJW
Assertion evlslem4 φxI,yJX·˙Ysupp0˙supp0˙xIX×supp0˙yJY

Proof

Step Hyp Ref Expression
1 evlslem4.b B=BaseR
2 evlslem4.z 0˙=0R
3 evlslem4.t ·˙=R
4 evlslem4.r φRRing
5 evlslem4.x φxIXB
6 evlslem4.y φyJYB
7 evlslem4.i φIV
8 evlslem4.j φJW
9 simp2 φxIyJxI
10 5 3adant3 φxIyJXB
11 eqid xIX=xIX
12 11 fvmpt2 xIXBxIXx=X
13 9 10 12 syl2anc φxIyJxIXx=X
14 simp3 φxIyJyJ
15 eqid yJY=yJY
16 15 fvmpt2 yJYByJYy=Y
17 14 6 16 3imp3i2an φxIyJyJYy=Y
18 13 17 oveq12d φxIyJxIXx·˙yJYy=X·˙Y
19 18 mpoeq3dva φxI,yJxIXx·˙yJYy=xI,yJX·˙Y
20 nfcv _ixIXx·˙yJYy
21 nfcv _jxIXx·˙yJYy
22 nffvmpt1 _xxIXi
23 nfcv _x·˙
24 nfcv _xyJYj
25 22 23 24 nfov _xxIXi·˙yJYj
26 nfcv _yxIXi
27 nfcv _y·˙
28 nffvmpt1 _yyJYj
29 26 27 28 nfov _yxIXi·˙yJYj
30 fveq2 x=ixIXx=xIXi
31 fveq2 y=jyJYy=yJYj
32 30 31 oveqan12d x=iy=jxIXx·˙yJYy=xIXi·˙yJYj
33 20 21 25 29 32 cbvmpo xI,yJxIXx·˙yJYy=iI,jJxIXi·˙yJYj
34 vex iV
35 vex jV
36 34 35 eqop2 z=ijzV×V1stz=i2ndz=j
37 fveq2 1stz=ixIX1stz=xIXi
38 fveq2 2ndz=jyJY2ndz=yJYj
39 37 38 oveqan12d 1stz=i2ndz=jxIX1stz·˙yJY2ndz=xIXi·˙yJYj
40 36 39 simplbiim z=ijxIX1stz·˙yJY2ndz=xIXi·˙yJYj
41 40 mpompt zI×JxIX1stz·˙yJY2ndz=iI,jJxIXi·˙yJYj
42 33 41 eqtr4i xI,yJxIXx·˙yJYy=zI×JxIX1stz·˙yJY2ndz
43 19 42 eqtr3di φxI,yJX·˙Y=zI×JxIX1stz·˙yJY2ndz
44 43 oveq1d φxI,yJX·˙Ysupp0˙=zI×JxIX1stz·˙yJY2ndzsupp0˙
45 difxp I×Jsupp0˙xIX×supp0˙yJY=Isupp0˙xIX×JI×Jsupp0˙yJY
46 45 eleq2i zI×Jsupp0˙xIX×supp0˙yJYzIsupp0˙xIX×JI×Jsupp0˙yJY
47 elun zIsupp0˙xIX×JI×Jsupp0˙yJYzIsupp0˙xIX×JzI×Jsupp0˙yJY
48 46 47 bitri zI×Jsupp0˙xIX×supp0˙yJYzIsupp0˙xIX×JzI×Jsupp0˙yJY
49 xp1st zIsupp0˙xIX×J1stzIsupp0˙xIX
50 5 fmpttd φxIX:IB
51 ssidd φxIXsupp0˙xIXsupp0˙
52 2 fvexi 0˙V
53 52 a1i φ0˙V
54 50 51 7 53 suppssr φ1stzIsupp0˙xIXxIX1stz=0˙
55 49 54 sylan2 φzIsupp0˙xIX×JxIX1stz=0˙
56 55 oveq1d φzIsupp0˙xIX×JxIX1stz·˙yJY2ndz=0˙·˙yJY2ndz
57 6 fmpttd φyJY:JB
58 xp2nd zIsupp0˙xIX×J2ndzJ
59 ffvelcdm yJY:JB2ndzJyJY2ndzB
60 57 58 59 syl2an φzIsupp0˙xIX×JyJY2ndzB
61 1 3 2 ringlz RRingyJY2ndzB0˙·˙yJY2ndz=0˙
62 4 60 61 syl2an2r φzIsupp0˙xIX×J0˙·˙yJY2ndz=0˙
63 56 62 eqtrd φzIsupp0˙xIX×JxIX1stz·˙yJY2ndz=0˙
64 xp2nd zI×Jsupp0˙yJY2ndzJsupp0˙yJY
65 ssidd φyJYsupp0˙yJYsupp0˙
66 57 65 8 53 suppssr φ2ndzJsupp0˙yJYyJY2ndz=0˙
67 64 66 sylan2 φzI×Jsupp0˙yJYyJY2ndz=0˙
68 67 oveq2d φzI×Jsupp0˙yJYxIX1stz·˙yJY2ndz=xIX1stz·˙0˙
69 xp1st zI×Jsupp0˙yJY1stzI
70 ffvelcdm xIX:IB1stzIxIX1stzB
71 50 69 70 syl2an φzI×Jsupp0˙yJYxIX1stzB
72 1 3 2 ringrz RRingxIX1stzBxIX1stz·˙0˙=0˙
73 4 71 72 syl2an2r φzI×Jsupp0˙yJYxIX1stz·˙0˙=0˙
74 68 73 eqtrd φzI×Jsupp0˙yJYxIX1stz·˙yJY2ndz=0˙
75 63 74 jaodan φzIsupp0˙xIX×JzI×Jsupp0˙yJYxIX1stz·˙yJY2ndz=0˙
76 48 75 sylan2b φzI×Jsupp0˙xIX×supp0˙yJYxIX1stz·˙yJY2ndz=0˙
77 7 8 xpexd φI×JV
78 76 77 suppss2 φzI×JxIX1stz·˙yJY2ndzsupp0˙supp0˙xIX×supp0˙yJY
79 44 78 eqsstrd φxI,yJX·˙Ysupp0˙supp0˙xIX×supp0˙yJY