Description: Lemma for evlsvvval akin to psrbagev2 . (Contributed by SN, 6-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | evlsvvvallem.d | |
|
evlsvvvallem.k | |
||
evlsvvvallem.m | |
||
evlsvvvallem.w | |
||
evlsvvvallem.i | |
||
evlsvvvallem.s | |
||
evlsvvvallem.a | |
||
evlsvvvallem.b | |
||
Assertion | evlsvvvallem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evlsvvvallem.d | |
|
2 | evlsvvvallem.k | |
|
3 | evlsvvvallem.m | |
|
4 | evlsvvvallem.w | |
|
5 | evlsvvvallem.i | |
|
6 | evlsvvvallem.s | |
|
7 | evlsvvvallem.a | |
|
8 | evlsvvvallem.b | |
|
9 | 3 2 | mgpbas | |
10 | eqid | |
|
11 | 3 10 | ringidval | |
12 | 3 | crngmgp | |
13 | 6 12 | syl | |
14 | 6 | crngringd | |
15 | 3 | ringmgp | |
16 | 14 15 | syl | |
17 | 16 | adantr | |
18 | 1 | psrbagf | |
19 | 8 18 | syl | |
20 | 19 | ffvelcdmda | |
21 | elmapi | |
|
22 | 7 21 | syl | |
23 | 22 | ffvelcdmda | |
24 | 9 4 17 20 23 | mulgnn0cld | |
25 | 24 | fmpttd | |
26 | 5 | mptexd | |
27 | fvexd | |
|
28 | 25 | ffund | |
29 | 1 | psrbagfsupp | |
30 | 8 29 | syl | |
31 | ssidd | |
|
32 | 0zd | |
|
33 | 19 31 5 32 | suppssr | |
34 | 33 | oveq1d | |
35 | eldifi | |
|
36 | 35 23 | sylan2 | |
37 | 9 11 4 | mulg0 | |
38 | 36 37 | syl | |
39 | 34 38 | eqtrd | |
40 | 39 5 | suppss2 | |
41 | 26 27 28 30 40 | fsuppsssuppgd | |
42 | 9 11 13 5 25 41 | gsumcl | |