Metamath Proof Explorer


Theorem evlsvvvallem

Description: Lemma for evlsvvval akin to psrbagev2 . (Contributed by SN, 6-Mar-2025)

Ref Expression
Hypotheses evlsvvvallem.d D=h0I|h-1Fin
evlsvvvallem.k K=BaseS
evlsvvvallem.m M=mulGrpS
evlsvvvallem.w ×˙=M
evlsvvvallem.i φIV
evlsvvvallem.s φSCRing
evlsvvvallem.a φAKI
evlsvvvallem.b φBD
Assertion evlsvvvallem φMvIBv×˙AvK

Proof

Step Hyp Ref Expression
1 evlsvvvallem.d D=h0I|h-1Fin
2 evlsvvvallem.k K=BaseS
3 evlsvvvallem.m M=mulGrpS
4 evlsvvvallem.w ×˙=M
5 evlsvvvallem.i φIV
6 evlsvvvallem.s φSCRing
7 evlsvvvallem.a φAKI
8 evlsvvvallem.b φBD
9 3 2 mgpbas K=BaseM
10 eqid 1S=1S
11 3 10 ringidval 1S=0M
12 3 crngmgp SCRingMCMnd
13 6 12 syl φMCMnd
14 6 crngringd φSRing
15 3 ringmgp SRingMMnd
16 14 15 syl φMMnd
17 16 adantr φvIMMnd
18 1 psrbagf BDB:I0
19 8 18 syl φB:I0
20 19 ffvelcdmda φvIBv0
21 elmapi AKIA:IK
22 7 21 syl φA:IK
23 22 ffvelcdmda φvIAvK
24 9 4 17 20 23 mulgnn0cld φvIBv×˙AvK
25 24 fmpttd φvIBv×˙Av:IK
26 5 mptexd φvIBv×˙AvV
27 fvexd φ1SV
28 25 ffund φFunvIBv×˙Av
29 1 psrbagfsupp BDfinSupp0B
30 8 29 syl φfinSupp0B
31 ssidd φBsupp0Bsupp0
32 0zd φ0
33 19 31 5 32 suppssr φvIsupp0BBv=0
34 33 oveq1d φvIsupp0BBv×˙Av=0×˙Av
35 eldifi vIsupp0BvI
36 35 23 sylan2 φvIsupp0BAvK
37 9 11 4 mulg0 AvK0×˙Av=1S
38 36 37 syl φvIsupp0B0×˙Av=1S
39 34 38 eqtrd φvIsupp0BBv×˙Av=1S
40 39 5 suppss2 φvIBv×˙Avsupp1SBsupp0
41 26 27 28 30 40 fsuppsssuppgd φfinSupp1SvIBv×˙Av
42 9 11 13 5 25 41 gsumcl φMvIBv×˙AvK