| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bndth.1 |
|
| 2 |
|
bndth.2 |
|
| 3 |
|
bndth.3 |
|
| 4 |
|
bndth.4 |
|
| 5 |
|
evth.5 |
|
| 6 |
|
cmptop |
|
| 7 |
3 6
|
syl |
|
| 8 |
1
|
toptopon |
|
| 9 |
7 8
|
sylib |
|
| 10 |
|
uniretop |
|
| 11 |
2
|
unieqi |
|
| 12 |
10 11
|
eqtr4i |
|
| 13 |
1 12
|
cnf |
|
| 14 |
4 13
|
syl |
|
| 15 |
14
|
feqmptd |
|
| 16 |
15 4
|
eqeltrrd |
|
| 17 |
|
retopon |
|
| 18 |
2 17
|
eqeltri |
|
| 19 |
18
|
a1i |
|
| 20 |
|
eqid |
|
| 21 |
20
|
cnfldtopon |
|
| 22 |
21
|
a1i |
|
| 23 |
|
0cnd |
|
| 24 |
19 22 23
|
cnmptc |
|
| 25 |
|
tgioo4 |
|
| 26 |
2 25
|
eqtri |
|
| 27 |
|
ax-resscn |
|
| 28 |
27
|
a1i |
|
| 29 |
22
|
cnmptid |
|
| 30 |
26 22 28 29
|
cnmpt1res |
|
| 31 |
20
|
subcn |
|
| 32 |
31
|
a1i |
|
| 33 |
19 24 30 32
|
cnmpt12f |
|
| 34 |
|
df-neg |
|
| 35 |
|
renegcl |
|
| 36 |
34 35
|
eqeltrrid |
|
| 37 |
36
|
adantl |
|
| 38 |
37
|
fmpttd |
|
| 39 |
38
|
frnd |
|
| 40 |
|
cnrest2 |
|
| 41 |
22 39 28 40
|
syl3anc |
|
| 42 |
33 41
|
mpbid |
|
| 43 |
26
|
oveq2i |
|
| 44 |
42 43
|
eleqtrrdi |
|
| 45 |
|
negeq |
|
| 46 |
34 45
|
eqtr3id |
|
| 47 |
9 16 19 44 46
|
cnmpt11 |
|
| 48 |
1 2 3 47 5
|
evth |
|
| 49 |
|
fveq2 |
|
| 50 |
49
|
negeqd |
|
| 51 |
|
eqid |
|
| 52 |
|
negex |
|
| 53 |
50 51 52
|
fvmpt |
|
| 54 |
53
|
adantl |
|
| 55 |
|
fveq2 |
|
| 56 |
55
|
negeqd |
|
| 57 |
|
negex |
|
| 58 |
56 51 57
|
fvmpt |
|
| 59 |
58
|
ad2antlr |
|
| 60 |
54 59
|
breq12d |
|
| 61 |
14
|
ffvelcdmda |
|
| 62 |
61
|
adantr |
|
| 63 |
14
|
ffvelcdmda |
|
| 64 |
63
|
adantlr |
|
| 65 |
62 64
|
lenegd |
|
| 66 |
60 65
|
bitr4d |
|
| 67 |
66
|
ralbidva |
|
| 68 |
67
|
rexbidva |
|
| 69 |
48 68
|
mpbid |
|