Metamath Proof Explorer


Theorem expaddzlem

Description: Lemma for expaddz . (Contributed by Mario Carneiro, 4-Jun-2014)

Ref Expression
Assertion expaddzlem AA0MMN0AM+N=AMAN

Proof

Step Hyp Ref Expression
1 simp1l AA0MMN0A
2 simp3 AA0MMN0N0
3 expcl AN0AN
4 1 2 3 syl2anc AA0MMN0AN
5 simp2r AA0MMN0M
6 5 nnnn0d AA0MMN0M0
7 expcl AM0AM
8 1 6 7 syl2anc AA0MMN0AM
9 simp1r AA0MMN0A0
10 5 nnzd AA0MMN0M
11 expne0i AA0MAM0
12 1 9 10 11 syl3anc AA0MMN0AM0
13 4 8 12 divrec2d AA0MMN0ANAM=1AMAN
14 simp2l AA0MMN0M
15 14 recnd AA0MMN0M
16 15 negnegd AA0MMN0- M=M
17 nnnegz M- M
18 5 17 syl AA0MMN0- M
19 16 18 eqeltrrd AA0MMN0M
20 2 nn0zd AA0MMN0N
21 19 20 zaddcld AA0MMN0M+N
22 expclz AA0M+NAM+N
23 1 9 21 22 syl3anc AA0MMN0AM+N
24 23 adantr AA0MMN0M+N0AM+N
25 8 adantr AA0MMN0M+N0AM
26 12 adantr AA0MMN0M+N0AM0
27 24 25 26 divcan4d AA0MMN0M+N0AM+NAMAM=AM+N
28 1 adantr AA0MMN0M+N0A
29 simpr AA0MMN0M+N0M+N0
30 6 adantr AA0MMN0M+N0M0
31 expadd AM+N0M0AM+N+- M=AM+NAM
32 28 29 30 31 syl3anc AA0MMN0M+N0AM+N+- M=AM+NAM
33 21 zcnd AA0MMN0M+N
34 33 15 negsubd AA0MMN0M+N+- M=M+N-M
35 2 nn0cnd AA0MMN0N
36 15 35 pncan2d AA0MMN0M+N-M=N
37 34 36 eqtrd AA0MMN0M+N+- M=N
38 37 adantr AA0MMN0M+N0M+N+- M=N
39 38 oveq2d AA0MMN0M+N0AM+N+- M=AN
40 32 39 eqtr3d AA0MMN0M+N0AM+NAM=AN
41 40 oveq1d AA0MMN0M+N0AM+NAMAM=ANAM
42 27 41 eqtr3d AA0MMN0M+N0AM+N=ANAM
43 1 adantr AA0MMN0M+N0A
44 33 adantr AA0MMN0M+N0M+N
45 simpr AA0MMN0M+N0M+N0
46 expneg2 AM+NM+N0AM+N=1AM+N
47 43 44 45 46 syl3anc AA0MMN0M+N0AM+N=1AM+N
48 21 znegcld AA0MMN0M+N
49 expclz AA0M+NAM+N
50 1 9 48 49 syl3anc AA0MMN0AM+N
51 50 adantr AA0MMN0M+N0AM+N
52 4 adantr AA0MMN0M+N0AN
53 expne0i AA0NAN0
54 1 9 20 53 syl3anc AA0MMN0AN0
55 54 adantr AA0MMN0M+N0AN0
56 51 52 55 divcan4d AA0MMN0M+N0AM+NANAN=AM+N
57 2 adantr AA0MMN0M+N0N0
58 expadd AM+N0N0A-M+N+N=AM+NAN
59 43 45 57 58 syl3anc AA0MMN0M+N0A-M+N+N=AM+NAN
60 15 35 negdi2d AA0MMN0M+N=-M-N
61 60 oveq1d AA0MMN0-M+N+N=- M-N+N
62 15 negcld AA0MMN0M
63 62 35 npcand AA0MMN0- M-N+N=M
64 61 63 eqtrd AA0MMN0-M+N+N=M
65 64 adantr AA0MMN0M+N0-M+N+N=M
66 65 oveq2d AA0MMN0M+N0A-M+N+N=AM
67 59 66 eqtr3d AA0MMN0M+N0AM+NAN=AM
68 67 oveq1d AA0MMN0M+N0AM+NANAN=AMAN
69 56 68 eqtr3d AA0MMN0M+N0AM+N=AMAN
70 69 oveq2d AA0MMN0M+N01AM+N=1AMAN
71 8 4 12 54 recdivd AA0MMN01AMAN=ANAM
72 71 adantr AA0MMN0M+N01AMAN=ANAM
73 70 72 eqtrd AA0MMN0M+N01AM+N=ANAM
74 47 73 eqtrd AA0MMN0M+N0AM+N=ANAM
75 elznn0 M+NM+NM+N0M+N0
76 75 simprbi M+NM+N0M+N0
77 21 76 syl AA0MMN0M+N0M+N0
78 42 74 77 mpjaodan AA0MMN0AM+N=ANAM
79 expneg2 AMM0AM=1AM
80 1 15 6 79 syl3anc AA0MMN0AM=1AM
81 80 oveq1d AA0MMN0AMAN=1AMAN
82 13 78 81 3eqtr4d AA0MMN0AM+N=AMAN