| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1l |  | 
						
							| 2 |  | simp3 |  | 
						
							| 3 |  | expcl |  | 
						
							| 4 | 1 2 3 | syl2anc |  | 
						
							| 5 |  | simp2r |  | 
						
							| 6 | 5 | nnnn0d |  | 
						
							| 7 |  | expcl |  | 
						
							| 8 | 1 6 7 | syl2anc |  | 
						
							| 9 |  | simp1r |  | 
						
							| 10 | 5 | nnzd |  | 
						
							| 11 |  | expne0i |  | 
						
							| 12 | 1 9 10 11 | syl3anc |  | 
						
							| 13 | 4 8 12 | divrec2d |  | 
						
							| 14 |  | simp2l |  | 
						
							| 15 | 14 | recnd |  | 
						
							| 16 | 15 | negnegd |  | 
						
							| 17 |  | nnnegz |  | 
						
							| 18 | 5 17 | syl |  | 
						
							| 19 | 16 18 | eqeltrrd |  | 
						
							| 20 | 2 | nn0zd |  | 
						
							| 21 | 19 20 | zaddcld |  | 
						
							| 22 |  | expclz |  | 
						
							| 23 | 1 9 21 22 | syl3anc |  | 
						
							| 24 | 23 | adantr |  | 
						
							| 25 | 8 | adantr |  | 
						
							| 26 | 12 | adantr |  | 
						
							| 27 | 24 25 26 | divcan4d |  | 
						
							| 28 | 1 | adantr |  | 
						
							| 29 |  | simpr |  | 
						
							| 30 | 6 | adantr |  | 
						
							| 31 |  | expadd |  | 
						
							| 32 | 28 29 30 31 | syl3anc |  | 
						
							| 33 | 21 | zcnd |  | 
						
							| 34 | 33 15 | negsubd |  | 
						
							| 35 | 2 | nn0cnd |  | 
						
							| 36 | 15 35 | pncan2d |  | 
						
							| 37 | 34 36 | eqtrd |  | 
						
							| 38 | 37 | adantr |  | 
						
							| 39 | 38 | oveq2d |  | 
						
							| 40 | 32 39 | eqtr3d |  | 
						
							| 41 | 40 | oveq1d |  | 
						
							| 42 | 27 41 | eqtr3d |  | 
						
							| 43 | 1 | adantr |  | 
						
							| 44 | 33 | adantr |  | 
						
							| 45 |  | simpr |  | 
						
							| 46 |  | expneg2 |  | 
						
							| 47 | 43 44 45 46 | syl3anc |  | 
						
							| 48 | 21 | znegcld |  | 
						
							| 49 |  | expclz |  | 
						
							| 50 | 1 9 48 49 | syl3anc |  | 
						
							| 51 | 50 | adantr |  | 
						
							| 52 | 4 | adantr |  | 
						
							| 53 |  | expne0i |  | 
						
							| 54 | 1 9 20 53 | syl3anc |  | 
						
							| 55 | 54 | adantr |  | 
						
							| 56 | 51 52 55 | divcan4d |  | 
						
							| 57 | 2 | adantr |  | 
						
							| 58 |  | expadd |  | 
						
							| 59 | 43 45 57 58 | syl3anc |  | 
						
							| 60 | 15 35 | negdi2d |  | 
						
							| 61 | 60 | oveq1d |  | 
						
							| 62 | 15 | negcld |  | 
						
							| 63 | 62 35 | npcand |  | 
						
							| 64 | 61 63 | eqtrd |  | 
						
							| 65 | 64 | adantr |  | 
						
							| 66 | 65 | oveq2d |  | 
						
							| 67 | 59 66 | eqtr3d |  | 
						
							| 68 | 67 | oveq1d |  | 
						
							| 69 | 56 68 | eqtr3d |  | 
						
							| 70 | 69 | oveq2d |  | 
						
							| 71 | 8 4 12 54 | recdivd |  | 
						
							| 72 | 71 | adantr |  | 
						
							| 73 | 70 72 | eqtrd |  | 
						
							| 74 | 47 73 | eqtrd |  | 
						
							| 75 |  | elznn0 |  | 
						
							| 76 | 75 | simprbi |  | 
						
							| 77 | 21 76 | syl |  | 
						
							| 78 | 42 74 77 | mpjaodan |  | 
						
							| 79 |  | expneg2 |  | 
						
							| 80 | 1 15 6 79 | syl3anc |  | 
						
							| 81 | 80 | oveq1d |  | 
						
							| 82 | 13 78 81 | 3eqtr4d |  |