Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Integer powers
expaddzlem
Next ⟩
expaddz
Metamath Proof Explorer
Ascii
Unicode
Theorem
expaddzlem
Description:
Lemma for
expaddz
.
(Contributed by
Mario Carneiro
, 4-Jun-2014)
Ref
Expression
Assertion
expaddzlem
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
→
A
M
+
N
=
A
M
A
N
Proof
Step
Hyp
Ref
Expression
1
simp1l
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
→
A
∈
ℂ
2
simp3
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
→
N
∈
ℕ
0
3
expcl
⊢
A
∈
ℂ
∧
N
∈
ℕ
0
→
A
N
∈
ℂ
4
1
2
3
syl2anc
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
→
A
N
∈
ℂ
5
simp2r
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
→
−
M
∈
ℕ
6
5
nnnn0d
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
→
−
M
∈
ℕ
0
7
expcl
⊢
A
∈
ℂ
∧
−
M
∈
ℕ
0
→
A
−
M
∈
ℂ
8
1
6
7
syl2anc
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
→
A
−
M
∈
ℂ
9
simp1r
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
→
A
≠
0
10
5
nnzd
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
→
−
M
∈
ℤ
11
expne0i
⊢
A
∈
ℂ
∧
A
≠
0
∧
−
M
∈
ℤ
→
A
−
M
≠
0
12
1
9
10
11
syl3anc
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
→
A
−
M
≠
0
13
4
8
12
divrec2d
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
→
A
N
A
−
M
=
1
A
−
M
A
N
14
simp2l
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
→
M
∈
ℝ
15
14
recnd
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
→
M
∈
ℂ
16
15
negnegd
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
→
−
-
M
=
M
17
nnnegz
⊢
−
M
∈
ℕ
→
−
-
M
∈
ℤ
18
5
17
syl
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
→
−
-
M
∈
ℤ
19
16
18
eqeltrrd
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
→
M
∈
ℤ
20
2
nn0zd
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
→
N
∈
ℤ
21
19
20
zaddcld
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
→
M
+
N
∈
ℤ
22
expclz
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
+
N
∈
ℤ
→
A
M
+
N
∈
ℂ
23
1
9
21
22
syl3anc
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
→
A
M
+
N
∈
ℂ
24
23
adantr
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
∧
M
+
N
∈
ℕ
0
→
A
M
+
N
∈
ℂ
25
8
adantr
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
∧
M
+
N
∈
ℕ
0
→
A
−
M
∈
ℂ
26
12
adantr
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
∧
M
+
N
∈
ℕ
0
→
A
−
M
≠
0
27
24
25
26
divcan4d
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
∧
M
+
N
∈
ℕ
0
→
A
M
+
N
A
−
M
A
−
M
=
A
M
+
N
28
1
adantr
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
∧
M
+
N
∈
ℕ
0
→
A
∈
ℂ
29
simpr
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
∧
M
+
N
∈
ℕ
0
→
M
+
N
∈
ℕ
0
30
6
adantr
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
∧
M
+
N
∈
ℕ
0
→
−
M
∈
ℕ
0
31
expadd
⊢
A
∈
ℂ
∧
M
+
N
∈
ℕ
0
∧
−
M
∈
ℕ
0
→
A
M
+
N
+
-
M
=
A
M
+
N
A
−
M
32
28
29
30
31
syl3anc
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
∧
M
+
N
∈
ℕ
0
→
A
M
+
N
+
-
M
=
A
M
+
N
A
−
M
33
21
zcnd
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
→
M
+
N
∈
ℂ
34
33
15
negsubd
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
→
M
+
N
+
-
M
=
M
+
N
-
M
35
2
nn0cnd
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
→
N
∈
ℂ
36
15
35
pncan2d
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
→
M
+
N
-
M
=
N
37
34
36
eqtrd
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
→
M
+
N
+
-
M
=
N
38
37
adantr
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
∧
M
+
N
∈
ℕ
0
→
M
+
N
+
-
M
=
N
39
38
oveq2d
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
∧
M
+
N
∈
ℕ
0
→
A
M
+
N
+
-
M
=
A
N
40
32
39
eqtr3d
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
∧
M
+
N
∈
ℕ
0
→
A
M
+
N
A
−
M
=
A
N
41
40
oveq1d
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
∧
M
+
N
∈
ℕ
0
→
A
M
+
N
A
−
M
A
−
M
=
A
N
A
−
M
42
27
41
eqtr3d
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
∧
M
+
N
∈
ℕ
0
→
A
M
+
N
=
A
N
A
−
M
43
1
adantr
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
∧
−
M
+
N
∈
ℕ
0
→
A
∈
ℂ
44
33
adantr
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
∧
−
M
+
N
∈
ℕ
0
→
M
+
N
∈
ℂ
45
simpr
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
∧
−
M
+
N
∈
ℕ
0
→
−
M
+
N
∈
ℕ
0
46
expneg2
⊢
A
∈
ℂ
∧
M
+
N
∈
ℂ
∧
−
M
+
N
∈
ℕ
0
→
A
M
+
N
=
1
A
−
M
+
N
47
43
44
45
46
syl3anc
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
∧
−
M
+
N
∈
ℕ
0
→
A
M
+
N
=
1
A
−
M
+
N
48
21
znegcld
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
→
−
M
+
N
∈
ℤ
49
expclz
⊢
A
∈
ℂ
∧
A
≠
0
∧
−
M
+
N
∈
ℤ
→
A
−
M
+
N
∈
ℂ
50
1
9
48
49
syl3anc
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
→
A
−
M
+
N
∈
ℂ
51
50
adantr
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
∧
−
M
+
N
∈
ℕ
0
→
A
−
M
+
N
∈
ℂ
52
4
adantr
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
∧
−
M
+
N
∈
ℕ
0
→
A
N
∈
ℂ
53
expne0i
⊢
A
∈
ℂ
∧
A
≠
0
∧
N
∈
ℤ
→
A
N
≠
0
54
1
9
20
53
syl3anc
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
→
A
N
≠
0
55
54
adantr
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
∧
−
M
+
N
∈
ℕ
0
→
A
N
≠
0
56
51
52
55
divcan4d
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
∧
−
M
+
N
∈
ℕ
0
→
A
−
M
+
N
A
N
A
N
=
A
−
M
+
N
57
2
adantr
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
∧
−
M
+
N
∈
ℕ
0
→
N
∈
ℕ
0
58
expadd
⊢
A
∈
ℂ
∧
−
M
+
N
∈
ℕ
0
∧
N
∈
ℕ
0
→
A
-
M
+
N
+
N
=
A
−
M
+
N
A
N
59
43
45
57
58
syl3anc
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
∧
−
M
+
N
∈
ℕ
0
→
A
-
M
+
N
+
N
=
A
−
M
+
N
A
N
60
15
35
negdi2d
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
→
−
M
+
N
=
-
M
-
N
61
60
oveq1d
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
→
-
M
+
N
+
N
=
-
M
-
N
+
N
62
15
negcld
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
→
−
M
∈
ℂ
63
62
35
npcand
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
→
-
M
-
N
+
N
=
−
M
64
61
63
eqtrd
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
→
-
M
+
N
+
N
=
−
M
65
64
adantr
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
∧
−
M
+
N
∈
ℕ
0
→
-
M
+
N
+
N
=
−
M
66
65
oveq2d
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
∧
−
M
+
N
∈
ℕ
0
→
A
-
M
+
N
+
N
=
A
−
M
67
59
66
eqtr3d
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
∧
−
M
+
N
∈
ℕ
0
→
A
−
M
+
N
A
N
=
A
−
M
68
67
oveq1d
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
∧
−
M
+
N
∈
ℕ
0
→
A
−
M
+
N
A
N
A
N
=
A
−
M
A
N
69
56
68
eqtr3d
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
∧
−
M
+
N
∈
ℕ
0
→
A
−
M
+
N
=
A
−
M
A
N
70
69
oveq2d
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
∧
−
M
+
N
∈
ℕ
0
→
1
A
−
M
+
N
=
1
A
−
M
A
N
71
8
4
12
54
recdivd
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
→
1
A
−
M
A
N
=
A
N
A
−
M
72
71
adantr
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
∧
−
M
+
N
∈
ℕ
0
→
1
A
−
M
A
N
=
A
N
A
−
M
73
70
72
eqtrd
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
∧
−
M
+
N
∈
ℕ
0
→
1
A
−
M
+
N
=
A
N
A
−
M
74
47
73
eqtrd
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
∧
−
M
+
N
∈
ℕ
0
→
A
M
+
N
=
A
N
A
−
M
75
elznn0
⊢
M
+
N
∈
ℤ
↔
M
+
N
∈
ℝ
∧
M
+
N
∈
ℕ
0
∨
−
M
+
N
∈
ℕ
0
76
75
simprbi
⊢
M
+
N
∈
ℤ
→
M
+
N
∈
ℕ
0
∨
−
M
+
N
∈
ℕ
0
77
21
76
syl
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
→
M
+
N
∈
ℕ
0
∨
−
M
+
N
∈
ℕ
0
78
42
74
77
mpjaodan
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
→
A
M
+
N
=
A
N
A
−
M
79
expneg2
⊢
A
∈
ℂ
∧
M
∈
ℂ
∧
−
M
∈
ℕ
0
→
A
M
=
1
A
−
M
80
1
15
6
79
syl3anc
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
→
A
M
=
1
A
−
M
81
80
oveq1d
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
→
A
M
A
N
=
1
A
−
M
A
N
82
13
78
81
3eqtr4d
⊢
A
∈
ℂ
∧
A
≠
0
∧
M
∈
ℝ
∧
−
M
∈
ℕ
∧
N
∈
ℕ
0
→
A
M
+
N
=
A
M
A
N