Description: Exponentiation is a monoid homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | expmhm.1 | |
|
expmhm.2 | |
||
Assertion | expmhm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expmhm.1 | |
|
2 | expmhm.2 | |
|
3 | expcl | |
|
4 | 3 | fmpttd | |
5 | expadd | |
|
6 | 5 | 3expb | |
7 | nn0addcl | |
|
8 | 7 | adantl | |
9 | oveq2 | |
|
10 | eqid | |
|
11 | ovex | |
|
12 | 9 10 11 | fvmpt | |
13 | 8 12 | syl | |
14 | oveq2 | |
|
15 | ovex | |
|
16 | 14 10 15 | fvmpt | |
17 | oveq2 | |
|
18 | ovex | |
|
19 | 17 10 18 | fvmpt | |
20 | 16 19 | oveqan12d | |
21 | 20 | adantl | |
22 | 6 13 21 | 3eqtr4d | |
23 | 22 | ralrimivva | |
24 | 0nn0 | |
|
25 | oveq2 | |
|
26 | ovex | |
|
27 | 25 10 26 | fvmpt | |
28 | 24 27 | ax-mp | |
29 | exp0 | |
|
30 | 28 29 | eqtrid | |
31 | nn0subm | |
|
32 | 1 | submmnd | |
33 | 31 32 | ax-mp | |
34 | cnring | |
|
35 | 2 | ringmgp | |
36 | 34 35 | ax-mp | |
37 | 33 36 | pm3.2i | |
38 | 1 | submbas | |
39 | 31 38 | ax-mp | |
40 | cnfldbas | |
|
41 | 2 40 | mgpbas | |
42 | cnfldadd | |
|
43 | 1 42 | ressplusg | |
44 | 31 43 | ax-mp | |
45 | cnfldmul | |
|
46 | 2 45 | mgpplusg | |
47 | cnfld0 | |
|
48 | 1 47 | subm0 | |
49 | 31 48 | ax-mp | |
50 | cnfld1 | |
|
51 | 2 50 | ringidval | |
52 | 39 41 44 46 49 51 | ismhm | |
53 | 37 52 | mpbiran | |
54 | 4 23 30 53 | syl3anbrc | |