Metamath Proof Explorer


Theorem expmhm

Description: Exponentiation is a monoid homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015)

Ref Expression
Hypotheses expmhm.1 N=fld𝑠0
expmhm.2 M=mulGrpfld
Assertion expmhm Ax0AxNMndHomM

Proof

Step Hyp Ref Expression
1 expmhm.1 N=fld𝑠0
2 expmhm.2 M=mulGrpfld
3 expcl Ax0Ax
4 3 fmpttd Ax0Ax:0
5 expadd Ay0z0Ay+z=AyAz
6 5 3expb Ay0z0Ay+z=AyAz
7 nn0addcl y0z0y+z0
8 7 adantl Ay0z0y+z0
9 oveq2 x=y+zAx=Ay+z
10 eqid x0Ax=x0Ax
11 ovex Ay+zV
12 9 10 11 fvmpt y+z0x0Axy+z=Ay+z
13 8 12 syl Ay0z0x0Axy+z=Ay+z
14 oveq2 x=yAx=Ay
15 ovex AyV
16 14 10 15 fvmpt y0x0Axy=Ay
17 oveq2 x=zAx=Az
18 ovex AzV
19 17 10 18 fvmpt z0x0Axz=Az
20 16 19 oveqan12d y0z0x0Axyx0Axz=AyAz
21 20 adantl Ay0z0x0Axyx0Axz=AyAz
22 6 13 21 3eqtr4d Ay0z0x0Axy+z=x0Axyx0Axz
23 22 ralrimivva Ay0z0x0Axy+z=x0Axyx0Axz
24 0nn0 00
25 oveq2 x=0Ax=A0
26 ovex A0V
27 25 10 26 fvmpt 00x0Ax0=A0
28 24 27 ax-mp x0Ax0=A0
29 exp0 AA0=1
30 28 29 eqtrid Ax0Ax0=1
31 nn0subm 0SubMndfld
32 1 submmnd 0SubMndfldNMnd
33 31 32 ax-mp NMnd
34 cnring fldRing
35 2 ringmgp fldRingMMnd
36 34 35 ax-mp MMnd
37 33 36 pm3.2i NMndMMnd
38 1 submbas 0SubMndfld0=BaseN
39 31 38 ax-mp 0=BaseN
40 cnfldbas =Basefld
41 2 40 mgpbas =BaseM
42 cnfldadd +=+fld
43 1 42 ressplusg 0SubMndfld+=+N
44 31 43 ax-mp +=+N
45 cnfldmul ×=fld
46 2 45 mgpplusg ×=+M
47 cnfld0 0=0fld
48 1 47 subm0 0SubMndfld0=0N
49 31 48 ax-mp 0=0N
50 cnfld1 1=1fld
51 2 50 ringidval 1=0M
52 39 41 44 46 49 51 ismhm x0AxNMndHomMNMndMMndx0Ax:0y0z0x0Axy+z=x0Axyx0Axzx0Ax0=1
53 37 52 mpbiran x0AxNMndHomMx0Ax:0y0z0x0Axy+z=x0Axyx0Axzx0Ax0=1
54 4 23 30 53 syl3anbrc Ax0AxNMndHomM